Oxidation of Metals

, Volume 91, Issue 3–4, pp 327–347 | Cite as

3D Microscopy to Assess the Effect of High Temperature Cyclic Oxidation on the Deformation of Cast and ODS FeCrAlY Alloys

  • Sebastien DryepondtEmail author
  • Josh C. Turan
  • Michael J. Lance
  • Bruce A. Pint
Original Paper


Specimen deformation, oxide scale growth, and scale cracking were monitored for cyclic oxidation exposures at 1200 °C of three cast FeCrAlY(Hf) alloys and two oxide dispersion strengthened (ODS) FeCrAl alloys. Evolution of both the specimen geometry and surface deformation was quantified using 3D optical microscopy. The stress in the alumina scale was also measured using photo-stimulated luminescence piezospectroscopy. The goal was to assess the effect of stress generation and stress relaxation on scale spallation for FeCrAl materials with drastic differences in terms of high temperature strengths. After 1000, 1-h cycles, the cast alloys exhibited significant deformation with a convoluted oxide scale, leading for the two Hf-free FeCrAlY alloys to undergo crack formation and spallation. For the Hf-containing FeCrAlY, limited spallation was observed due to the localization of spallation at grain boundaries, the large grain structure, and the beneficial effect of Hf on scale adhesion. In contrast, limited deformation was measured for the ODS FeCrAl alloys, with minimal cracking and scale spallation for alloy PM2000 after 1000 h. A higher spallation rate was observed for ODS MA956, which was attributed to a high defect concentration in the alumina scale that formed. The mechanisms leading to spallation during cyclic oxidation for the cast and ODS FeCrAlY alloys are described.


ODS FeCrAlY Oxide scale 3D microscopy Deformation Cracking 



The authors would like to thank G. Garner, M Stephens, T. Lowe, T. Jordan, and C. Cox for their help with the experimental work. They also would like to acknowledge M. Brady and B. Thiesing for reviewing the manuscript. This research was sponsored by the US Department of Energy (DOE), Fossil Energy Crosscutting Research Program and the DOE Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (Combined Heat and Power). This manuscript has been authored by UT–Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the US Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (


  1. 1.
    F. Starr, A. R. White, B. Kazimierzak, Proc. Materials for Advanced Power Engineering 1994, eds. D. Coutsouradis, J. H. Davidson, J. Ewald, P. Greenfield, T. Khan, M. Malik, D. B. Meadowcroft, V. Regis, R. B. Scarlin, F. Schubert and D. V. Thornton, (Kluwer Academic Publishers, Dordrecht, 1994), 1393–1412.Google Scholar
  2. 2.
    I. Gurrappa, S. Weinbruch, D. Naumenko and W.J. Quadakkers, Materials and Corrosion 51, 224–235 (2000).CrossRefGoogle Scholar
  3. 3.
    W. J. Quadakkers and K. Bongartz, Materials and Corrosion 45, 232–241 (1994).CrossRefGoogle Scholar
  4. 4.
    H. Al-badairy, G.J. Tatlock, M.J. Bennett, Materials at High Temperatures 17, 101–107 (2000).CrossRefGoogle Scholar
  5. 5.
    B.A. Pint, L.R. Walker and I.G. Wright, Materials at High Temperatures 21, 175–185 (2004).CrossRefGoogle Scholar
  6. 6.
    M. J. Bennett, R. Perkins, J. B. Price, F. Starr, Proc. Materials for Advanced Power Engineering, Liege, October 1994, Ed. D. Coutsouradis et al. (Kluwer Academic Publishers, 1994), 1553.Google Scholar
  7. 7.
    M. J. Bennett, Solid State Phenomena 41, 235–252 (1995).CrossRefGoogle Scholar
  8. 8.
    B. A. Pint, S. Dryepondt, A. Rouaix-Vande Put and Y. Zhang, JOM 64, 1454–1460 (2012).Google Scholar
  9. 9.
    B.K. Kad, S. Dryepondt, A.R. Jones, V. Cedro III, G.J. Tatlock, B.A. Pint, P.F. Tortorelli, and P.A. Rawls, Proceedings of the 8th International Charles Parsons Turbine Conference, (Portsmouth, United Kingdom 2011).Google Scholar
  10. 10.
    G.J. Tatlock, E. G. Dyadko, S.N. Dryepondt and I.A. Wright, Metallurgical and Materials Transaction 38, 1663–1665 (2007).CrossRefGoogle Scholar
  11. 11.
    C. L.Chen, P. Wang, G.J. Tatlock, Materials at High Temperature 26, 299–303 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Dawson, S. Cater, G.J. Tatlock and C. Stanhole, Materials Science and Technology 30, 1685–1690 (2009)CrossRefGoogle Scholar
  13. 13.
    J.R. Rieken, I.E. Anderson, M.J. Kramer, G.R. Odette, E. Stergar and E. Haney, Journal of Nuclear Materials 428, 65–75 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson and G.J. Tatlock, Acta Materialia 87, 201–215 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Dryepondt and B.A. Pint, NACE Paper C2013-0002646, presented at NACE Corrosion 2013, Orlando, FL, 2013.Google Scholar
  16. 16.
    S. Dryepondt, A. Rouaix-Vande Put, B.A. Pint, Oxidation of Metals 79, 627–638 (2013).Google Scholar
  17. 17.
    S. Dryepondt, J. Turan, D. Leonard and B. A. Pint, Oxidation of Metals 87, 215–248 (2017).CrossRefGoogle Scholar
  18. 18.
    R. Janakiraman, G.H. Meier, F.S. Pettit, Metallurgical and Materials Transactions A 30, 2905 (1999).CrossRefGoogle Scholar
  19. 19.
    M.C. Maris-Sida, G.H. Meier, F.S. Pettit, Metallurgical and Materials Transactions A 34, 2609 (2003).CrossRefGoogle Scholar
  20. 20.
    Evans, H. E., International Material Reviews 40, 1–40 (1995).CrossRefGoogle Scholar
  21. 21.
    W. J. Brindley, J. D. Whittenberger, Materials Science and Engineering A163 33 41 (1993).Google Scholar
  22. 22.
    V. K. Tolpygo, J.R. Dryden and D.R. Clarke, Acta Materialia 46, 927–937 (1998).CrossRefGoogle Scholar
  23. 23.
    V. K. Tolpygo and D.R. Clarke, Oxidation of Metals 49, 187–212 (1998).CrossRefGoogle Scholar
  24. 24.
    C. Mennicke, D.R. Clarke and M. Ruhle, Oxidation of Metals 55, 551–569 (2001).CrossRefGoogle Scholar
  25. 25.
    D.R. Clarke, Acta Materialia 51, 1393–1407 (2003).CrossRefGoogle Scholar
  26. 26.
    V.K. Tolpygo and D.R. Clarke, Acta Materialia 47, 3589–3605 (1999).CrossRefGoogle Scholar
  27. 27.
    V.K. Tolpygo and D.R. Clarke, Surface and Coatings Technology 120–121, 1–7 (1999).CrossRefGoogle Scholar
  28. 28.
    D.M. Lipkin, D.R. Clarke, Oxidation of Metals 45, 267–280 (1996).CrossRefGoogle Scholar
  29. 29.
    C. Mercer, K. Kawagishi, T. Tmimatsu, D. Hovis, T.M. Pollock, Surface and Coatings Technology 205, 3066–3072 (2011).CrossRefGoogle Scholar
  30. 30.
    M. J. Lance, K. A. Unocic, J. A. Haynes and B. A. Pint, Surface and Coatings Technology 237, 2–7 (2013).CrossRefGoogle Scholar
  31. 31.
    Q. Ma and D. R. Clarke, Acta Metallurgica 41, 1811–1816 (1993).CrossRefGoogle Scholar
  32. 32.
    B. A. Pint, Oxidation of Metals 45, 1–37 (1996).CrossRefGoogle Scholar
  33. 33.
    G. Merceron, R. Molins, J.L. Strudel, Materials at High Temperatures 17, 149–157 (2000).CrossRefGoogle Scholar
  34. 34.
    K.A. Unocic, E. Essuman, S. Dryepondt and B.A. Pint, Materials at High Temperatures 29, 171–180 (2012).CrossRefGoogle Scholar
  35. 35.
    S. Dryepondt, K.A. Unocic, D.T. Hoelzer, C.P. Massey and B.A. Pint, Journal of Nuclear Materials 501, 59–71 (2018)CrossRefGoogle Scholar
  36. 36.
    H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379–402 (1999).CrossRefGoogle Scholar
  37. 37.
    D. J. Young, A. Chyrkin and W. J. Quadakkers, Oxidation of Metals 77, 253–264 (2012).CrossRefGoogle Scholar
  38. 38.
    R. Duan, A. Jalowicka, K. A. Unocic, B. A. Pint, P. Huczkowski, A. Chyrkin, D. Grüner, R. Pillai and W. J. Quadakkers, Oxidation of Metals 87, 11–38 (2017).CrossRefGoogle Scholar
  39. 39.
    B. A. Pint, W. D. Porter and I. G. Wright, Materials Science Forum 595-598, 1083–1092 (2008).CrossRefGoogle Scholar
  40. 40.
    D. Naumenko, B. A. Pint and W. J. Quadakkers, Oxidation of Metals 86, 1–43 (2016).CrossRefGoogle Scholar
  41. 41.
    V.K. Tolpygo and D.R. Clarke, Acta materialia 46, 5167–5174 (1998).CrossRefGoogle Scholar
  42. 42.
    J. K. Wright, R.L. Williamson, D. Renusch, B. Veal, M. Brimsditch, P.Y. Hou and R.M. Cannon, Mater Science and Engineering A262, 246–255 (1999).CrossRefGoogle Scholar
  43. 43.
    B. A. Pint, Journal of the American Ceramic Society 86, 686–695 (2003).CrossRefGoogle Scholar
  44. 44.
    W. J. Quadakkers, P. Huczkowski, D. Naumenko, J. Zurek, G. H. Meier, L. Niewolak and L. Singheiser, Material Science Forum 595–598, 2008 (1111–1118).CrossRefGoogle Scholar
  45. 45.
    B. A. Pint, A. J. Garratt-Reed and L. W. Hobbs, Journal of the American Ceramic Society 81, 305–14 (1998).CrossRefGoogle Scholar
  46. 46.
    W. J. Quadakkers, D. Naumenko, L. Singheiser, H. J. Penkalla, A. K. Tyagi and A. Czyrska-Filemonowicz, Materials and Corrosion 51, 350–357 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Volvo Car CorporationGöteborgSweden

Personalised recommendations