Skip to main content
Log in

Resistance of High-Nickel, Heat-Resisting Alloys to Air and to Supercritical CO2 at High Temperatures

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Commercial alloys 282, 230, HR160, HR120 and 188 were exposed to supercritical CO2 and to air at temperatures of 700–1000 °C. Alloy specimens took the form of thick-walled tubes, which were pressurised internally with flowing CO2 to simulate the likely stress conditions in service. All alloys formed protective scales containing continuous chromia layers plus internal oxidation zones. No internal carburisation was ever observed. In most cases, the reaction morphologies and rates were very similar in the two gases. The lack of any significant carbon effect on corrosion is attributed to additional scale layers of manganese spinel and/or silica, which prevent carbon penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. S. Turchi, Z. Ma, T. W. Neises, and M. J. Wagner, Journal of Solar Energy Engineering 135, 041007-1 (2013).

    Article  Google Scholar 

  2. J. Pasch, T. Conboy, D. Fleming, and G. Rochau, Supercritical CO2 Recompression Brayton Cycle: Completed Assembly Description, SANDIA REPORT, SAND2012-9546, 40p, October 2012.

  3. V. Dostal, PhD Thesis—A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Massachusetts Institute of Technology, January 2004.

  4. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).

    Article  Google Scholar 

  5. F. S. Pettit, J. A. Goebel, and G. W. Goward, Corrosion Science 9, 903 (1969).

    Article  Google Scholar 

  6. F. Rouillard, G. Moine, M. Tabarant, and J. C. Ruiz, Oxidation of Metals 77, 57 (2012).

    Article  Google Scholar 

  7. F. Rouillard, G. Moine, L. Martinelli, and J. C. Ruiz, Oxidation of Metals 77, 27 (2012).

    Article  Google Scholar 

  8. H. E. McCoy, Corrosion 21, 84 (1965).

    Article  Google Scholar 

  9. P. Promdirek, G. Lothongkum, S. Chandra-Ambhorn, Y. Wouters, and A. Galerie, Oxidation of metals 81, 315 (2014).

    Article  Google Scholar 

  10. S. B. Newcomb, W. M. Stobbs, and E. Metcalfe, Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences 319, 191 (1986).

    Article  Google Scholar 

  11. W. M. Stobbs, S. B. Newcomb, and E. Metcalfe, Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences 319, 219 (1986).

    Article  Google Scholar 

  12. S. Bouhieda, F. Rouillard, and K. Wolski, Materials at High Temperatures 29, 151 (2012).

    Article  Google Scholar 

  13. J. Pirón-Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Shingheiser, and W. J. Quadakkers, Materials at High Temperatures 26, 63 (2009).

    Article  Google Scholar 

  14. C. Gleave, J. M. Calvert, D. G. Lee, and P. C. Rowlands, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 379, 409 (1982).

    Article  Google Scholar 

  15. L. Tan, M. Anderson, D. Taylor, and T. R. Allen, Corrosion Science 53, 3273 (2011).

    Article  Google Scholar 

  16. G. Cao, V. Firouzdor, K. Shridharan, M. Anderson, and T. R. Allen, Corrosion Science 60, 246 (2012).

    Article  Google Scholar 

  17. V. Firouzdor, K. Shridharan, G. Cao, M. Anderson, and T. Y. R. Allen, Corrosion Science 69, 281 (2013).

    Article  Google Scholar 

  18. T. Gheno, D. Monceau, J. Zhang, and D. Young, Corrosion Science 53, 2767 (2011).

    Article  Google Scholar 

  19. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  Google Scholar 

  20. I. Wolf and H. J. Grabke, Solid State Communications 54, 5 (1985).

    Article  Google Scholar 

  21. D. Young, T. D. Nguyen, P. Felter, J. Zhang, and J. Cairney, Scripta Materialia 77, 29 (2014).

    Article  Google Scholar 

  22. X. G. Zheng and D. J. Young, Oxidation of Metals 42, 163 (1994).

    Article  Google Scholar 

  23. S. Bouhieda, F. Rouillard, V. Barnier, and K. Wolski, Oxidation of Metals 80, 493 (2013).

    Article  Google Scholar 

  24. D. J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed, (Elsevier, Amsterdam, 2016).

    Google Scholar 

  25. T. N. Neises, M. J. Wagner, and A. K. Gray, Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 °C. The 8th International Conference on Energy Sustainability. Boston, Massachusetts, June 30–July 2, 2014. Conference Paper NREL/CP-5500-6148.

  26. J. H. Park, W. E. King, and S. J. Rothman, Journal of the American Ceramic Society 70, 880 (1987).

    Article  Google Scholar 

  27. M. J. Graham, J. I. Eldridge, D. F. Mitchell, and R. J. Hussey, Materials Science Forum 43, 207 (1989).

    Article  Google Scholar 

  28. K. Hauffe and H. Pfeiffer, Zeitschrift fur Metallkunde 44, 27 (1953). (in German).

    Google Scholar 

  29. W. W. Smeltzer, Acta Metallurgica 8, 377 (1960).

    Article  Google Scholar 

  30. F. S. Pettit, R. Yinger, and J. B. Wagner, Acta Metallurgica 8, 1960 (617).

    Article  Google Scholar 

  31. T. D. Nguyen, J. Zhang, and D. J. Young, Corrosion Science 76, 231 (2013).

    Article  Google Scholar 

  32. C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959). (in German).

    Google Scholar 

  33. R. A. Rapp, Corrosion 21, 382 (1965).

    Article  Google Scholar 

  34. P. Guo, J. Zhang, D. J. Young, and C. H. Konrad, Oxidation of Metals 83, 223 (2015).

    Article  Google Scholar 

  35. R. I. Olivares, W. Stein, T. D. Nguyen, D. J. Young, Corrosion of Nickel-Base Alloys by Supercritical CO2, in Advances in Materials Technology for Fossil Power Plants, eds. J. Parker, J. Shingledecker, J. Siefert, ISBN 978-1-62708-131-3 (ASM International, Materials Park, OH, 2016) p. 889.

  36. T. D. Nguyen, J. Zhang, and D. J. Young, Oxidation of Metals 81, 549 (2014).

    Article  Google Scholar 

  37. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 75, 143 (2011).

    Article  Google Scholar 

  38. A. Jalowicka, R. Duan, P. Huczkowski, A. Chyrkin, D. Gruner, B. A. Pint, K. A. Unocic, and W. J. Quadakkers, JOM 67, 2573 (2015).

    Article  Google Scholar 

  39. D. L. Klarstrom, in Materials Design Approach and Experience, J. C. Zhao et al. eds., TMS (2001) pp 297–307; D. L. Klarstrom, NASA Contractor Report.

  40. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780024288.pdf; R. Fui, S. Zhao, Y. Wang, Q. Li, Y. Ma, F. Lin, C. Chi, Energy Materials 2014, CSM and TMS (2014) pp. 193–202.

Download references

Acknowledgements

This work has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). The Australian Government, through ARENA, is supporting Australian research and development in solar photovoltaic and concentrating solar power technologies to help solar power become cost competitive with other energy sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Olivares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivares, R.I., Young, D.J., Nguyen, T.D. et al. Resistance of High-Nickel, Heat-Resisting Alloys to Air and to Supercritical CO2 at High Temperatures. Oxid Met 90, 1–25 (2018). https://doi.org/10.1007/s11085-017-9820-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9820-7

Keywords

Navigation