Skip to main content
Log in

Modification of the mechanism for stress-aided grain boundary oxidation ahead of cracks

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, we consider the diffusion mechanisms for different metal elements during oxidation and extend the stress–diffusion coupled model for stress-aided grain boundary oxidation ahead of cracks (Evans et al. in Scr Mater 69:179–182, 2013) to a more general situation including both outward and inward diffusion at the crack tip during oxidation. The analyses show that the transformation stress generated due to oxide formation near the crack tip could in principle promote the growth of Cr2O3 oxide at the crack tip in the intrusion direction but has no enhancement effect on NiO oxide in the extrusion direction with respect to the original position of the crack tip.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L. Viskari, M. Hörnqvist, K. L. Moore, Y. Cao and K. Stiller, Acta Materialia 61, 2013 (3630).

    Article  Google Scholar 

  2. L. Viskari, S. Johansson and K. Stiller, Materials at High Temperatures 28, 2011 (336).

    Article  Google Scholar 

  3. H. S. Kitaguchi, M. P. Moody, H. Y. Li, H. E. Evans, M. C. Hardy and S. Lozano-Perez, Scripta Materialia 97, 2015 (41).

    Article  Google Scholar 

  4. H. S. Kitaguchi, H. Y. Li, H. E. Evans, R. G. Ding, I. P. Jones, G. Baxter and P. Bowen, Acta Materialia 61, 2013 (1968).

    Article  Google Scholar 

  5. U. Krupp, W. Kane, J. A. Pfaendtner, X. Liu, C. Laird and C. J. M. Jr, Materials Research 7, 2004 (35).

    Article  Google Scholar 

  6. J. A. Pfaendtner, Acta materialia 49, 2001 (3369).

    Article  Google Scholar 

  7. H. E. Evans, H. Y. Li and P. Bowen, Scripta Materialia 69, 2013 (179).

    Article  Google Scholar 

  8. H. E. Evans, International Materials Reviews 40, 1995 (1).

    Article  Google Scholar 

  9. X. Dong, X. Fang, X. Feng and K.-C. Hwang, Journal of the American Ceramic Society 96, 2013 (44).

    Article  Google Scholar 

  10. X. Dong, X. Feng and K.-C. Huang, Journal of Applied Physics 112, 2012 (023502).

    Article  Google Scholar 

  11. Y. Suo and S. Shen, Journal of Applied Physics 114, 2013 (164905).

    Article  Google Scholar 

  12. H. Wang, Y. Suo and S. Shen, Oxidation of Metals 83, 2015 (507).

    Article  Google Scholar 

  13. X. Dong, X. Fang, X. Feng and X. Sun, Oxidation of Metals 86, 2016 (125).

    Article  Google Scholar 

  14. N. Birks, G.H. Meier, F.S. Pettit. Introduction to the high temperature oxidation of metals. 2nd ed., Cambridge University Press, (2006)

  15. H. E. Evans, D. J. Norfolk and T. Swan, Journal of Electrochemical Society 125, 1978 (1180).

    Article  Google Scholar 

  16. P. Kofstad and K. P. Lillerud, Journal of Electrochemical Society 127, 1980 (2410).

    Article  Google Scholar 

  17. A. A. N. Németh, D. J. Crudden, D. E. J. Armstrong, D. M. Collins, K. Li, A. J. Wilkinson, C. R. M. Grovenor and R. C. Reed, Acta Materialia 126, 2017 (361).

    Article  Google Scholar 

  18. G. Calvarin-Amiri, R. Molins and A. M. Huntz, Materials Science Forum 369–372, 2001 (467).

    Article  Google Scholar 

  19. L. Brassart and Z. Suo, Journal of the Mechanics and Physics of Solids 61, 2013 (61).

    Article  Google Scholar 

  20. K. S. Chan, Metallurgical and Materials Transactions A 45, 2014 (3454).

    Article  Google Scholar 

  21. M. Schütze, Oxidation of Metals 25, 1986 (409).

    Article  Google Scholar 

  22. M. Schütze, Oxidation of Metals 24, 1985 (199).

    Article  Google Scholar 

  23. E. A. A. Jarvis, R. L. Hayes and E. A. Carter, Chemphyschem 2, 2001 (55).

    Article  Google Scholar 

  24. Y. Ikeda and K. Nii, Oxidation of Metals 12, 1978 (487).

    Article  Google Scholar 

  25. G. Zhou, L. Luo, L. Li, J. Ciston, E. A. Stach and J. C. Yang, Physical Review Letters 109, 2012 (235501).

    Article  Google Scholar 

Download references

Acknowledgment

Xue Feng gratefully acknowledges the support from the National Basic Research Program of China (Grant No. 2015CB351900), National Natural Science Foundation of China (Grant Nos. 11320101001, 11227801) and Tsinghua University Initiative Scientific Research Program. Xufei Fang gratefully acknowledges the financial support of Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Dong, X., Jiang, D. et al. Modification of the mechanism for stress-aided grain boundary oxidation ahead of cracks. Oxid Met 89, 331–338 (2018). https://doi.org/10.1007/s11085-017-9789-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9789-2

Keywords

Navigation