Advertisement

Oxidation of Metals

, Volume 88, Issue 3–4, pp 361–370 | Cite as

Optimizing the Oxidation Properties of FeCrAl Alloys at Low Temperatures

  • Jesper EjenstamEmail author
  • Bo Jönsson
  • Peter Szakalos
Original Paper

Abstract

FeCrAl alloys are proposed candidate materials for liquid lead applications. Chromium is needed to assist the formation of a protective alumina layer, albeit has to be limited to avoid α′ precipitation. Reactive elements (RE) improve oxidation properties, but little is known about the RE effects at lower temperatures. An alloy matrix based on Fe–10Cr–4Al (wt%), with varying Zr, Y and Ti contents, was exposed to liquid lead up to 1 year in the temperature interval of 450–550 °C. It was found that the formation of protective alumina was dependent on the RE/carbon ratio. All alloys with ratios lower than unity showed poor oxidation properties due to the formation of Cr-carbides in the metal–oxide interface. A sufficiently high amount of Zr and Ti was shown to significantly improve the oxidation properties at both temperatures. The positive effect is related to the suppression of Cr-carbides by addition of stronger carbide formers.

Keywords

FeCrAl Reactive elements Cr-carbides Alumina 

Notes

Acknowledgements

Sandvik Heating Technology AB is greatly acknowledged for providing model alloys and know-how. The authors are particularly thankful for the kind help provided by F. Rave, D. Chandrasekaran, T. Helander, R. Berglund and P. Byhlin. O. Karlsson (SEM and EBSD) and F. Lindberg (FIB-SEM and TEM), both at Swerea KIMAB, are thanked for helping out with microscopy analyzes. The authors are also grateful for the fruitful input and guidance from Prof. J. Wallenius (Div. Reactor Physics, KTH), adj. Prof. R. Pettersson (Jernkontoret and Div. Surface and Corrosion Science, KTH) and adj. Prof. M. Lundberg (Sandvik Materials Technology AB and Div. Surface and Corrosion Science, KTH). The work was funded and supported by Euratom FP7 project MatISSE (Reference No. 604862) and the strategic innovation program “Metalliska Material,” a joint effort by Vinnova, Formas and the Swedish energy agency (Energimyndigheten).

References

  1. 1.
    R. C. Asher, D. Davies and S. A. Beetham, Corrosion Science 17, 545 (1977).CrossRefGoogle Scholar
  2. 2.
    M. Kondo and M. Takahashi, Journal of Nuclear Materials 356, 203 (2006).CrossRefGoogle Scholar
  3. 3.
    P. Hosemann, H. T. Thau, A. L. Johnson, S. A. Maloy and N. Li, Journal of Nuclear Materials 373, 246 (2008).CrossRefGoogle Scholar
  4. 4.
    J. Lim, H. O. Nam, I. S. Hwang and J. H. Kim, Journal of Nuclear Materials 407, 205 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Del Giacco, A. Weisenburger, A. Jianu, F. Lang and G. Mueller, Journal of Nuclear Materials 421, 39 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Lim, I. S. Hwang and J. H. Kim, Journal of Nuclear Materials 441, 650 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Weisenburger, A. Jianu, S. Doyle, M. Bruns, R. Fetzer, A. Heinzel, M. DelGiacco, W. An and G. Muller, Journal of Nuclear Materials 437, 282 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Ejenstam, M. Halvarsson, J. Weidow, B. Jonsson and P. Szakalos, Journal of Nuclear Materials 443, 161 (2013).CrossRefGoogle Scholar
  9. 9.
    N.S.C. OECD Nuclear Energy Agency, Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies, 2015 ed., OECD Nuclear Energy Agency No. 7268 (2015).Google Scholar
  10. 10.
    J. L. Bartos, The Nature of Aging of FeCrAlY alloys at 450 C, Technical Report No. GEMP 709 (General Electric Company, 1969).Google Scholar
  11. 11.
    C. Capdevila, M. K. Miller, K. F. Russell, J. Chao and J. L. Gonzalez-Carrasco, Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing 490, 277 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Kobayashi and T. Takasugi, Scripta Materialia 63, 1104 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Ejenstam, M. Thuvander, P. Olsson, F. Rave and P. Szakalos, Journal of Nuclear Materials 457, 291 (2015).CrossRefGoogle Scholar
  14. 14.
    K. G. Field, X. X. Hu, K. C. Littrell, Y. Yamamoto and L. L. Snead, Journal of Nuclear Materials 465, 746 (2015).CrossRefGoogle Scholar
  15. 15.
    P. D. Edmondson, S. A. Briggs, Y. Yamamoto, R. H. Howard, K. Sridharan, K. A. Terrani and K. G. Field, Scripta Materialia 116, 112 (2016).CrossRefGoogle Scholar
  16. 16.
    H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).CrossRefGoogle Scholar
  17. 17.
    J. Stringer, Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing 120, 129 (1989).CrossRefGoogle Scholar
  18. 18.
    F. H. Stott, G. C. Wood and J. Stringer, Oxidation of Metals 44, 113 (1995).CrossRefGoogle Scholar
  19. 19.
    B. A. Pint, Oxidation of Metals 45, 1 (1996).CrossRefGoogle Scholar
  20. 20.
    B. A. Pint, Progress in Understanding the Reactive Element Effect Since the Whittle and Stringer Literature Review in John Stringer Symposium on High Temperature Corrosion, eds. P. F. Tortorelli, I. G. Wright and P. Y. Hou, Proceedings from Materials Solutions Conference, Materials Park, OH (ASM, Indianapolis, IN, 2003), pp. 9–19.Google Scholar
  21. 21.
    V. Kochubey, D. Naumenko, E. Wessel, J. Le Coze, L. Singheiser, H. Al-Badairy, G. J. Tatlock and W. J. Quadakkers, Materials Letters 60, 1654 (2006).CrossRefGoogle Scholar
  22. 22.
    W. C. Leslie and G. C. Rauch, Metallurgical Transactions A—Physical Metallurgy and Materials Science 9, 343 (1978).CrossRefGoogle Scholar
  23. 23.
    D. Naumenko, K. V, J. Le-Coze, E. Wessel, L. Singheiser and W. J. Quadakkers, High Temperature Corrosion and Protection of Materials 6, Prt 1 and 2, Proceedings 461–464, 489 (2004).Google Scholar
  24. 24.
    E. Wessel, V. Kochubey, D. Naumenko, L. Niewolak, L. Singheiser and W. J. Quadakkers, Scripta Materialia 51, 987 (2004).CrossRefGoogle Scholar
  25. 25.
    S. G. Gopalakrishnan, P. Huczkowski, J. Pernpeintner, T. Fend, H. Hattendorf, R. Iskandar, J. Mayer, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 29, 249 (2012).CrossRefGoogle Scholar
  26. 26.
    C. M. Fang, M. A. van Huis and H. W. Zandbergen, Computational Materials Science 51, 146 (2012).CrossRefGoogle Scholar
  27. 27.
    B. Li, S. Wu, Y. Teng, C. Liu, Y. Yan, Z. Zhao and H. Wu, Acta Metallurgica Sinica 32, 926 (1996).Google Scholar
  28. 28.
    K. A. Darling, B. K. VanLeeuwen, J. E. Semones, C. C. Koch, R. O. Scattergood, L. J. Kecskes and S. N. Mathaudhu, Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing 528, 4365 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.KTH Royal Institute of TechnologyStockholmSweden
  2. 2.Sandvik Heating Technology ABHallstahammarSweden

Personalised recommendations