Skip to main content

A Thermodynamic Approach to Guide Reactive Element Doping: Hf Additions to NiCrAl

Abstract

A method based on thermodynamic modeling was developed to determine optimal amounts of Hf additions to Al2O3-forming, γ-γ′ NiCrAl alloys. The alloy ability to maintain Hf in solution was set by the Hf concentration required to form HfO2 at the oxygen activity defined by the alloy/Al2O3 equilibrium. This Hf tolerance decreased with increasing temperature and increased with increasing γ′ fraction. The latter was due to the higher solubility of Hf in γ′, compared to γ. The validity of the procedure was evaluated by oxidizing a series of NiCrAl–Hf alloys in dry air at 1000–1200 °C. The experimental results followed the predicted trends, although the Hf tolerance tended to be overestimated. The applicability of the criterion, and potential routes for improved predictability, were discussed by considering the influence of the compositional changes occurring at the metal surface during the transient and steady-state stages of the oxidation process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society of London A 295, 309 (1980).

    Article  Google Scholar 

  2. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  Google Scholar 

  3. J. Stringer, Materials Science and Engineering A 120, 129 (1989).

    Article  Google Scholar 

  4. D. P. Moon, Materials Science and Technology 5, 754 (1989).

    Article  Google Scholar 

  5. R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).

    Article  Google Scholar 

  6. B. A. Pint, in Proceedings of the John Stringer Symposium on High Temperature Corrosion, eds P.F. Tortorelli et al (ASM International, Materials Park, OH, 2003), p. 9.

  7. B. A. Pint, Journal of the American Ceramic Society 86, 686 (2003).

    Article  Google Scholar 

  8. A. W. Funkenbusch, J. G. Smeggil and N. S. Bornstein, Metallurgical Transactions A 16, 1164 (1985).

    Article  Google Scholar 

  9. J. G. Smeggil, A. W. Funkenbusch and N. S. Bornstein, Metallurgical Transactions A 17, 923 (1986).

    Article  Google Scholar 

  10. J. L. Smialek, Metallurgical Transactions A 18, 164 (1987).

    Article  Google Scholar 

  11. D. R. Sigler, Oxidation of Metals 32, 337 (1989).

    Article  Google Scholar 

  12. J. L. Smialek and B. A. Pint, Materials Science Forum 369, 459 (2001).

    Article  Google Scholar 

  13. P. Y. Hou, T. Izumi and B. Gleeson, Oxidation of Metals 72, 109 (2009).

    Article  Google Scholar 

  14. B. A. Pint and I. G. Wright, High Temperature Corrosion and Materials Chemistry. in Electrochemical Society Proceedings, vol. 98–99, eds. P. Y. Hou, et al. (Electrochemical Society, Pennington, NJ, 1998), p. 263.

    Google Scholar 

  15. J. D. Kuenzly and D. L. Douglass, Oxidation of Metals 8, 139 (1974).

    Article  Google Scholar 

  16. Z. Tang and B. Gleeson, unpublished work.

  17. M. Task, B. Gleeson, F. S. Pettit and G. H. Meier, Oxidation of Metals 80, 125 (2013).

    Article  Google Scholar 

  18. T. Gheno and B. Gleeson, Oxidation of Metals (2016). doi:10.1007/s11085-016-9669-1.

    Google Scholar 

  19. N. Dupin, I. Ansara and B. Sundman, Calphad 25, 279 (2001).

    Article  Google Scholar 

  20. Materials Preparation Center, Ames Laboratory, US DOE Basic Energy Sciences, Ames, IA. https://www.ameslab.gov/mpc.  

  21. N. Saunders and A. P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier, Amsterdam, 1998).

    Google Scholar 

  22. T. Wang, Z. P. Jin and J. C. Zhao, Zeitschrift für Metallkunde 92, 441 (2001).

    Google Scholar 

  23. B. Sundman, B. Jansson and J.-O. Andersson, Calphad 9, 153 (1985).

    Article  Google Scholar 

  24. J.-O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Calphad 26, 273 (2002).

    Article  Google Scholar 

  25. Z. Li, Investigation of the minor-element effects on the oxidation behavior of γ-Ni + γ′-Ni3Al alloys, Ph.D. Thesis, University of Pittsburgh (2015).

  26. H. Y. Ku, Journal of Applied Physics 35, 3391 (1964).

    Article  Google Scholar 

  27. D. P. Whittle, D. J. Evans, D. B. Scully and G. C. Wood, Acta Metallurgica 15, 1421 (1967).

    Article  Google Scholar 

  28. B. D. Bastow, D. P. Whittle and G. C. Wood, Oxidation of Metals 12, 413 (1978).

    Article  Google Scholar 

  29. T. J. Nijdam, L. P. H. Jeurgens and W. G. Sloof, Acta Materialia 51, 5295 (2003).

    Article  Google Scholar 

  30. J. A. Nesbitt and R. W. Heckel, Metallurgical Transactions A 18, 2075 (1987).

    Article  Google Scholar 

  31. B. Gleeson, W. Wang, S. Hayashi and D. Sordelet, Materials Science Forum 461–464, 213 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy through Grant DE-FE0024056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gheno.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gheno, T., Zhou, BC., Ross, A. et al. A Thermodynamic Approach to Guide Reactive Element Doping: Hf Additions to NiCrAl. Oxid Met 87, 297–310 (2017). https://doi.org/10.1007/s11085-016-9706-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9706-0

Keywords

  • Reactive elements
  • Thermodynamic modeling
  • Coatings
  • High-temperature oxidation