High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition

Abstract

The high-temperature oxidation behavior of a new family of refractory high-entropy alloys (HEAs) with compositions of W–Mo–Cr–Ti–Al, Nb–Mo–Cr–Ti–Al and Ta–Mo–Cr–Ti–Al was studied at 1000 and 1100 °C. Based on these equimolar starting compositions, the main incentive of this study was to select the most promising alloy system whose properties may then be successively improved. Despite the high amount of refractory elements, Ta–Mo–Cr–Ti–Al showed good oxidation resistance at 1000 and 1100 °C. Moderate values of mass gain and complex oxidation kinetics were observed for the W- and Nb-containing HEAs. These alloys formed inhomogeneous oxide scales possessing regions with thick and porous layers as well as areas revealing quite thin oxide scales due to the formation of discontinuous Cr- and Al-rich scales. The most promising behavior was shown by the alloy Ta–Mo–Cr–Ti–Al which followed the parabolic rate law for oxide growth due to the formation of a thin and compact Al-rich layer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J. H. Perepezko, Science 326, 1068 (2009).

    Article  Google Scholar 

  2. 2.

    R. Syre, Niobium, Molybdenum, Tantalum and Tungsten: A Summary of Their Properties with Recommendation for Research and Development (North Atlantic Treaty Organization, Advisory Group For Aeronautical Research and Development, 1961).

  3. 3.

    L. Huang, X. F. Sun, H. R. Guang, and Z. Q. Hu, Oxidation of Metals 65, 391 (2006).

    Article  Google Scholar 

  4. 4.

    B. P. Bewlay, M. R. Jackson, and H. A. Lipsitt, Metallurgical and Materials Transactions A 27A, 3801 (1996).

    Article  Google Scholar 

  5. 5.

    M. Azim, D. Schliephake, C. Hochmuth, B. Gorr, H.-J. Christ, U. Glatzel, and M. Heilmaier, Journal of Minerals 57, 2621 (2015).

    Google Scholar 

  6. 6.

    J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, Materials Science Forum 560, 1 (2007).

    Article  Google Scholar 

  7. 7.

    O. N. Senkov, C. Woodward, and D. B. Miracle, Journal of Minerals 66, 2030 (2014).

    Google Scholar 

  8. 8.

    O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, and D. B. Miracle, Journal of Materials Science 47, 6522 (2012).

    Article  Google Scholar 

  9. 9.

    C. M. Liu, H. M. Wang, S. Q. Zhang, H. B. Tang, and A. L. Zhang, Journal of Alloys and Compounds 583, 162 (2014).

    Article  Google Scholar 

  10. 10.

    B. Gorr, M. Azim, H.-J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier, Journal of Alloys and Compounds 624, 270 (2015).

    Article  Google Scholar 

  11. 11.

    H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J. N. Wagner, H.-J. Christ, and M. Heilmaier, Journal of Alloys and Compounds 661, 206 (2016).

    Article  Google Scholar 

  12. 12.

    B. Gorr, M. Azim, H.-J. Christ, H. Chen, D. V. Szabo, A. Kauffmann, and M. Heilmaier, Metallurgical and Materials Transactions A 47A, 961 (2016).

    Article  Google Scholar 

  13. 13.

    B. Gorr, F. Mueller, H.-J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier, Journal of Alloys and Compounds 688, 468 (2016).

    Article  Google Scholar 

  14. 14.

    F. Bondioli, A. M. Ferrari, C. Leonelli, L. Manfredini, L. Linati, and P. Musterelli, Journal of the American Ceramic Society 83, 2036 (2000).

    Article  Google Scholar 

  15. 15.

    J. L. Waring, Journal of the American Ceramic Society—Discussion and Notes 48, 493 (1965).

    Article  Google Scholar 

  16. 16.

    S. Matthews, F. Taliana, and B. James, Surface & Coatings Technology 212, 109 (2012).

    Article  Google Scholar 

  17. 17.

    S. Matthews, Surface & Coatings Technology 206, 3323 (2012).

    Article  Google Scholar 

  18. 18.

    N. M. Geyer, Protection of Refractory Metals Against Atmospheric Environments, http://contrails.iit.edu/DigitalCollection/1961/ASDTR61-322article07.pdf. Assessed 1 March 2016.

  19. 19.

    E. A. Gulbransen, K. F. Andrew, and F. A. Brassant, Journal of the Electrochemical Society 110, 952 (1963).

    Article  Google Scholar 

  20. 20.

    E. A. Gulbransen, K. F. Andrew, and F. A. Brassant, Journal of the Electrochemical Society 111, 103 (1961).

    Article  Google Scholar 

  21. 21.

    C. S. Giggins and F. S. Pettit, Journal of Electrochemical Society 118, 1782 (1971).

    Article  Google Scholar 

  22. 22.

    W. D. Klopp, Recent Developments in Chromium and Chromium Alloys, NASA-Report TM X-1867 (1969).

  23. 23.

    R. P. Elliot, Transaction of the ASM 52, 900 (1960).

    Google Scholar 

  24. 24.

    H. Jehn and E. Olzi, Journal of the Less Common Metals 27, 297 (1972).

    Article  Google Scholar 

  25. 25.

    J. L. Murray and H. A. Wriedt, Journal of Phase Equilibria 8, 148 (1987).

    Article  Google Scholar 

  26. 26.

    R. L. Wagner, Metallurgical Transactions 1, 3365 (1970).

    Google Scholar 

  27. 27.

    A. Taylor, Research for Solubility of Interstitials in Columbium Part III. A Study of Columbium-Rich Alloys in the Ternary Systems Cb-Mo-O, Cb-Mo-N and Cb-Mo-C, Technical Report, Westinghouse Research Labs Pittsburgh (1966).

  28. 28.

    F. E. Bacon and P. M. Moanfeldt, Reaction with common gases, Columbium and Tantalum (Wiley, New York, 1963).

    Google Scholar 

  29. 29.

    D. E. Weaver, The diffusivity and Solubility of Nitrogen in Molybdenum and Trapping of Nitrogen by Carbon in Molybdenum, PhD Thesis, Lawrence Livermore Laboratory, University of California (1972).

  30. 30.

    B. Holmberg, Acta Chemica Scandinavica 16, 1255 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bronislava Gorr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorr, B., Müller, F., Azim, M. et al. High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition. Oxid Met 88, 339–349 (2017). https://doi.org/10.1007/s11085-016-9696-y

Download citation

Keywords

  • High-entropy alloys
  • Refractory metals
  • Oxidation kinetics
  • Oxide scale morphology
  • Oxide evaporation