Oxidation of Metals

, Volume 88, Issue 1–2, pp 29–40 | Cite as

Relations Between Oxidation Induced Microstructure and Mechanical Durability of Oxide Scales

  • Valérie ParryEmail author
  • Céline Pascal
  • Muriel Braccini
  • Elena Fedorova
  • Marc Mantel
  • Yves Wouters
  • Djar Oquab
  • Daniel Monceau
  • Rafael Estevez
  • Guillaume Parry
Original Paper


Most industrial heat-resistant stainless steels contain silicon as a minor constituent. At high temperature, the internal formation of amorphous silica reduces oxidation rates but decreases the metal/oxide interface toughness. Tensile testing experiments performed on AISI 304L previously oxidized in synthetic air for 50 h at 900 or 1000 °C showed a relation between the silica morphology and location and the crack patterns. A micromechanical modeling using cohesive zone models to describe interfaces fracture behavior is proposed to investigate relevant parameters controlling the silica/alloy interface debonding. Calculations carried out using the finite elements method have shown that location of silica inclusions and silica/metal interface toughness are key parameters determining the cracks pattern morphology and the critical strain at failure.


AISI 304L Tensile testing Silica embrittlement Micromechanical modeling 



This work was realized in the framework of a PICS project supported by the National Centre for Scientific Research (CNRS, France) Ref n° 6095 and the Russian Foundation for Basic Research (RFBR, Russia) Ref n° 13-08-91053-CNRS_a.


  1. 1.
    H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxidation of Metals 19, 1 (1983).CrossRefGoogle Scholar
  2. 2.
    J. Dunning, D. E. Alman, and J. C. Rawers, Oxidation of Metals. 57, 409 (2002).CrossRefGoogle Scholar
  3. 3.
    L. Mikkelsen, S. Linderoth, and J. B. Bilde-Sorensen, Materials Science Forum. 461, 117 (2004).CrossRefGoogle Scholar
  4. 4.
    T. Ishitsuka, Y. Inoue, and H. Ogawa, Oxidation of Metals. 61, 125 (2003).CrossRefGoogle Scholar
  5. 5.
    G. Bamba, Y. Wouters, A. Galerie, F. Charlot, and A. Dellali, Acta Materialia. 54, 3917 (2006).CrossRefGoogle Scholar
  6. 6.
    S. N. Basu and G. J. Yurek, Oxidation of Metals. 36, 281 (1991).CrossRefGoogle Scholar
  7. 7.
    N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, 2006).Google Scholar
  8. 8.
    E. Fedorova, M. Braccini, V. Parry, C. Pascal, M. Mantel, F. Roussel-Dherbey, D. Oquab, Y. Wouters, and D. Monceau, Corrosion Science. 103, 145 (2016).CrossRefGoogle Scholar
  9. 9.
    C. Pascal, V. Parry, E. Fedorova, M. Braccini, P. Chemelle, N. Meyer, D. Oquab, D. Monceau, Y. Wouters, and M. Mantel, Corrosion Science. 93, 100 (2015).CrossRefGoogle Scholar
  10. 10.
    F. Toscan, PhD thesis, Institut National Polytechnique de Grenoble, 2004.Google Scholar
  11. 11.
    J. Schindelin, I. Arganda-Carreras, and E. Frise, Nature methods. 9, 676 (2012).CrossRefGoogle Scholar
  12. 12.
    M. N. Nagl, W. T. Evans, D. J. Hall, and S. R. J. Saunders, Oxidation of Metals. 42, 431 (1994).Google Scholar
  13. 13.
    D. Lussana, D. Baldissin, M. Massazza, and M. Baricco, Oxidation of Metals. 81, 515 (2014).CrossRefGoogle Scholar
  14. 14.
    N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel, and H. Buscail, Applied Surface Science. 254, 2292 (2008).CrossRefGoogle Scholar
  15. 15.
    A. L. Ji, W. Wang, and G. H. Song, Materials Letters. 58, 1993 (2004).CrossRefGoogle Scholar
  16. 16.
    L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, 2004).Google Scholar
  17. 17.
    A. Needleman, Journal of Applied Mechanics. 54, 525 (1987).CrossRefGoogle Scholar
  18. 18.
    K. Park and G. H. Paulino, Applied Mechanics Reviews. 64, 060802 (2013).CrossRefGoogle Scholar
  19. 19.
    ABAQUS Manuals Collection. Dassault Systèmes Simulia Corp. Providence, RI, USA, 2010.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, SIMaPGrenobleFrance
  2. 2.Polytechnic Institute of Siberian Federal UniversityKrasnoyarskRussia
  3. 3.CIRIMAT LaboratoryUniversity of Toulouse, CNRS, INPT, UPSToulouse Cedex 4France
  4. 4.UGITECH SAUgineFrance

Personalised recommendations