Skip to main content
Log in

Modelling of the Mechanical Behaviour of a Chromia Forming Alloy Under Thermal Loading

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

When metals or alloys are oxidized at high temperature, an oxide film generally develops. Stress induced by oxide growth may influence the structure and the protective properties of the oxide scales. Classical models (taking into account elasticity and/or viscoplasticity and/or thermal mismatches) are able to predict some stress evolution. Moreover, the origin of that stress for isothermal condition must be sought-after in a growth strain related to the formation of the oxide above the substrate. In the present work, details are given on the modelling of stress under thermal loadings. The study is performed considering different thermomechanical behaviours and upgraded taking into account the origin of the different thermal couplings (weak and strong ones). Therefore, comparison with experimental results performed at ESRF allows extracting thermomechanical parameters with numerical values for different configurations (isothermal or with thermal evolution). This allows also investigating different mechanisms occurring at high temperature in chromia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Schütze, Protective oxide scales and their breakdown, (Wiley, Chichester, 1991).

    Google Scholar 

  2. A. M. Huntz and B. Pieraggi, Oxydation des Matériaux Métalliques, (Hermès Science, Paris, 2003).

    Google Scholar 

  3. A. M. Huntz, G. C. Amiri, H. E. Evans and G. Cailletaud, Oxid. Met. 57, 499 (2002).

    Article  Google Scholar 

  4. D. R. Clarke, Acta Mater. 51, 1393 (2003).

    Article  Google Scholar 

  5. B. Panicaud, J. L. Grosseau-Poussard and J. F. Dinhut, Comput. Mater. Sci. 42, 286 (2008).

    Article  Google Scholar 

  6. J. L. Grosseau-Poussard, B. Panicaud and S. Ben, Afia. Comput. Mater. Sci. 71, 47 (2013).

    Article  Google Scholar 

  7. S. Maharjan, X. Zhang and Z. Wang, Oxid. Met. 77, 47 (2012).

    Article  Google Scholar 

  8. J. L. Ruan, Y. Pei and D. Fang, Acta Mech. 223, 12 (2012).

    Article  Google Scholar 

  9. J. R. Vaunois, J. M. Dorvaux, P. Kanouté and J. L. Chaboche, Eur. J. Mech. A/Solid. 42, 402 (2013).

    Article  Google Scholar 

  10. B. Panicaud, J. L. Grosseau-Poussard, M. Kemdehoundja and J. F. Dinhut, Comput. Mater. Sci. 46, 42 (2009).

    Article  Google Scholar 

  11. P. Kofstad, High temperature corrosion, (Elsevier, Angleterre, 1988).

    Google Scholar 

  12. D. Faurie, G. Geandier, P. O. Renault, E. Le Bouhris and D. Thiaudière, Thin Solid Film. 530, 29 (2013).

    Article  Google Scholar 

  13. B. W. Veal, A. P. Paulikas and P. Y. Hou, Nat. Mater. 5, 349 (2006).

    Article  Google Scholar 

  14. S. Daghigh, PhD Thesis, Université de Paris-Sud, U.F.R scientifique d’Orsay, 1996.

Download references

Acknowledgements

The authors are grateful for the provision of the induction furnace by B. Gorges and H. Vitoux, from the Sample Environment Support Service at the European Synchrotron Radiation Facilities, during the run 02-02 821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Panicaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Rakotovao, F., Grosseau-Poussard, JL. et al. Modelling of the Mechanical Behaviour of a Chromia Forming Alloy Under Thermal Loading. Oxid Met 88, 15–27 (2017). https://doi.org/10.1007/s11085-016-9671-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9671-7

Keywords

Navigation