Skip to main content
Log in

Deposit Build-up and Corrosion in a Copper Flash Smelting Heat Recovery Boiler

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The aim of the work was to improve the understanding of deposit formation and corrosion in a copper flash smelting plant, focusing on the effects of process gas temperature (400–900 °C) and heat-transfer surface temperature (160–320 °C) on deposit formation and corrosion rate. The rate of build-up increased as a function of process gas temperature, which was explained by a larger extent of sintering at higher temperatures, resulting in slagging and thus, in better adhesion of particles hitting the surface. The corrosion rate increased as a function of process gas temperature. Iron sulphate (FeSO4 or Fe2(SO4)3) was found at the interface between the deposit and the corroded metal surface, suggesting that corrosion was induced by sulphuric acid (H2SO4) from the reaction between SO3 (originating from SO2 in the process gas) and water vapour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. E. Schelsinger, Extractive Metallurgy of Copper, (Elsevier, Amsterdam, 2011).

    Google Scholar 

  2. T. Ranki-Kilpinen, Sulphation of cuprous and cupric oxide dusts and heterogeneous copper matte particles in simulated flash smelting heat recovery boiler conditions, PhD Thesis, Helsinki University of Technology, 2004.

  3. A. Brink, B. Li and M. Hupa, Progress in Computational Fluid Dynamics 9, (8), 447 (2009).

    Article  Google Scholar 

  4. B. Li, A. Brink and M. Hupa, Progress in Computational Fluid Dynamics 9, (8), 453 (2009).

    Article  Google Scholar 

  5. A. Bahadori, Applied Thermal Engineering 31, (8–9), 1457 (2011).

    Article  Google Scholar 

  6. E. R. Lovejoy, D. R. Hanson and L. G. Huey, Journal of Physical Chemistry 100, (51), 19911 (1996).

    Article  Google Scholar 

  7. K. Morokuma and C. Muguruma, Journal of the American Chemical Society 116, (22), 10316 (1994).

    Article  Google Scholar 

  8. J. T. Jayne, U. Poeschl, Y. Chen, D. Dai, L. Molina, D. R. Worsnop, C. E. Kolb and M. J. Molina, Journal of Physical Chemistry A 101, (51), 10000 (1997).

    Article  Google Scholar 

  9. A. G. Okkes, Hydrocarbon Processing 66, (7), 53 (1987).

    Google Scholar 

  10. J. M. Blanco and F. Pena, Applied Thermal Engineering 28, (7), 777 (2008).

    Article  Google Scholar 

  11. R. Ebara, F. Tanaka and M. Kawasaki, Engineering Failure Analysis 33, 29 (2013).

    Article  Google Scholar 

  12. A. Brink, T. Laurén, P. Yrjas, M. Hupa and J. Friesenbichler, Fuel Processing Technology 88, (11–12), 1129 (2007).

    Article  Google Scholar 

  13. D. Bankiewicz, E. Alonso-Herranz, P. Yrjas, T. Laurén, H. Spliethoff and M. Hupa, Energy & Fuels 25, (8), 3476 (2011).

    Article  Google Scholar 

  14. T. Markova, B. Boyanov, S. Pironkov and N. Shopov, Journal of Mining and Metallurgy 36, (3–4B), 195 (2000).

    Google Scholar 

  15. R. J. St Eloi, C. J. Newman and G. Macfarlane, CIM Bulletin 87, (977), 77 (1994).

    Google Scholar 

  16. S. Prasad and B. D. Pandey, Canadian Metallurgical Quarterly 38, (4), 237 (1999).

    Google Scholar 

  17. P. Safe, D.M. Jones, Sulfide smelting ´98, TMS Annual Meeting, San Antonio Texas, 401 (1998).

  18. F. D. Stevenson and C. E. Wicks, Bureau of Mines Report of Investigations 6212, 1 (1963).

    Google Scholar 

  19. C. Samuelsson and B. Bjoerkman, Scandinavian Journal of Metallurgy 27, (2), 54 (1998).

    Google Scholar 

  20. D.R. Swinbourne, E. Simak, A. Yazawa, Sulfide smelting 2002, Proceedings of a symposium held during the TMS Annual Meeting, Seattle, WA, United States, Feb. 17–21, 2002, 247 (2002).

  21. T. Kurosawa, T. Yagihashi, K. Togo and T. Kato, Transactions of National Research Institute for Metals 15, (3), 130 (1973).

    Google Scholar 

  22. T. L. Jorgensen, H. Livbjerg and P. Glarborg, Chemical Engineering Science 62, (16), 4496 (2007).

    Article  Google Scholar 

  23. D. Fleig, K. Andersson and F. Johnsson, Industrial & Engineering Chemistry Research 51, (28), 9483 (2012).

    Article  Google Scholar 

  24. P. M. Foster, Atmospheric Environment 3, (2), 157 (1969).

    Article  Google Scholar 

  25. P. Marier and H. P. Dibbs, Thermochimica Acta 8, (1–2), 155 (1974).

    Article  Google Scholar 

  26. D. J. Bayless, J. Jewmaidang, S. Tanneer and R. Birru, Proceedings of the Combustion Institute 28, (Pt. 2), 2499 (2000).

    Article  Google Scholar 

  27. L. P. Belo, L. K. Elliot, R. J. Stanger, R. Spörl, K. V. Shah, J. Maier and T. F. Wall, Energy & Fuels 28, (11), 7243 (2014).

    Article  Google Scholar 

  28. K. Kletzl, Wochenblatt fuer Papierfabrikation 82, 949 (1954).

    Google Scholar 

  29. D. Fleig, M. U. Alzueta, F. Normann, M. Abián, K. Andersson and F. Johnsson, Combustion and Flame 160, (6), 1142 (2013).

    Article  Google Scholar 

  30. F. Verhoff and J. Banchero, Chemical Engineering Process 70, (8), 71 (1974).

    Google Scholar 

  31. R. Backman, Sodium and sulfur chemistry in combustion gases, PhD Thesis, Åbo Akademi University, 1989.

  32. S. Sarkar, Journal of Metals 34, (10), 43 (1982).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Janne Hautamäki and Mr. Tor Laurén for the crucial assistance they provided during the measurement campaigns. Boliden Harjavalta and Outotec are gratefully acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juho Lehmusto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmusto, J., Stenlund, D., Lindgren, M. et al. Deposit Build-up and Corrosion in a Copper Flash Smelting Heat Recovery Boiler. Oxid Met 87, 199–214 (2017). https://doi.org/10.1007/s11085-016-9666-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9666-4

Keywords

Navigation