Skip to main content

Advertisement

Log in

Temperature Dependence of Oxidation Behaviour of a Ferritic–Martensitic Steel in Supercritical Water at 600–700 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation tests on a ferritic–martensitic steel were carried out in deaerated supercritical water at 600–700 °C under 25 MPa pressure. The oxidation kinetics followed near-parabolic rate law at 600 °C and obeyed near-cubic rate law at 650–700 °C. The deviations from parabolic behaviour may have been related to the development of growth stresses within the oxide. The oxidation rate did not always increase significantly with increasing temperature. The oxidation rates at 650 and 700 °C were approximately equal. The reason for this may be attributed to the formation of large pores at the interface between oxide scale and substrate at 700 °C. The influence of temperature on the microstructure of oxide scale and oxidation kinetics is discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Viswanathan, J. Sarver and J. M. Tanzosh, Journal of Materials Engineering and Performance 15, 2006 (255).

    Article  Google Scholar 

  2. N. Q. Zhang, Z. L. Zhu, F. B. Lv, D. F. Jiang and H. Xu, Oxidation of Metals 86, 2016 (1).

    Article  Google Scholar 

  3. H. Xu, Z. L. Zhu and N. Q. Zhang, Oxidation of Metals 82, 2014 (21).

    Article  Google Scholar 

  4. J. Bischoff, A. Motta, C. Eichfeld, R. Comstock, G. Cao and T. Allen, Journal of Nuclear Materials 441, 2013 (604).

    Article  Google Scholar 

  5. N. Zhang, H. Xu, B. Li, Y. Bai and D. Liu, Corrosion Science 56, 2012 (123).

    Article  Google Scholar 

  6. Y. Chen, K. Sridharan and T. R. Allen, Corrosion Science 48, 2006 (2843).

    Article  Google Scholar 

  7. X. Y. Zhong, X. Q. Wu and E. H. Han, Corrosion Science 90, 2015 (511).

    Article  Google Scholar 

  8. L. Tan, X. Ren and T. R. Allen, Corrosion Science 52, 2010 (1520).

    Article  Google Scholar 

  9. K. Yin, S. Qiu, R. Tang, Q. Zhang and L. Zhang, The Journal of Supercritical Fluids 50, 2009 (235).

    Article  Google Scholar 

  10. J. Żurek, E. Wessel, L. Niewolak, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Corrosion Science 46, 2004 (2301).

    Article  Google Scholar 

  11. D. J. Young, J. Zurek, L. Singheiser and W. J. Quadakkers, Corrosion Science 53, 2011 (2131).

    Article  Google Scholar 

  12. N. Q. Zhang, Z. L. Zhu, H. Xu, X. P. Mao and J. Li, Corrosion Science 103, 2016 (124).

    Article  Google Scholar 

  13. M. Nezakat, H. Akhiani, S. Penttilä, S. M. Sabet and J. Szpunar, Corrosion Science 94, 2015 (197).

    Article  Google Scholar 

  14. L. Tan, M. T. Machut, K. Sridharan and T. R. Allen, Journal of Nuclear Materials 371, 2007 (161).

    Article  Google Scholar 

  15. L. Tan, Y. Yang and T. R. Allen, Corrosion Science 48, 2006 (3123).

    Article  Google Scholar 

  16. X. Ren, K. Sridharan and T. R. Allen, Journal of Nuclear Materials 358, 2006 (227).

    Article  Google Scholar 

  17. J. Stringer, Corrosion Science 10, 1970 (513).

    Article  Google Scholar 

  18. J. Bischoff and A. T. Motta, Journal of Nuclear Materials 424, 2012 (261).

    Article  Google Scholar 

  19. Z. L. Zhu, H. Xu, D. F. Jiang, G. Q. Yue, B. R. Li and N. Q. Zhang, The Journal of Supercritical Fluids 10, 2016 (56).

    Article  Google Scholar 

  20. R. Haugsrud, Corrosion Science 45, 2003 (211).

    Article  Google Scholar 

  21. H. E. Evans, D. J. Norfolk and T. Swan, Journal of The Electrochemical Society 125, 1978 (1180).

    Article  Google Scholar 

  22. H. E. Evans, International Materials Reviews 40, 1995 (1).

    Article  Google Scholar 

  23. W. J. Quadakkers, Materials and Corrosion 41, 1990 (659).

    Article  Google Scholar 

  24. D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser and W. J. Quadakkers, Metallurgical and Materials Transactions A 38, 2007 (2974).

    Article  Google Scholar 

  25. Z. Liu, W. Gao and Y. He, Oxidation of Metals 341, 2000 (53).

    Google Scholar 

  26. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant and G. Picard, Corrosion Science 50, 2008 (2537).

    Article  Google Scholar 

  27. N. B. Pilling and R. E. Bedworth, Journal Institute of Metals 29, 1923 (529–582).

    Google Scholar 

  28. D. R. Clarke, Acta Materialia 51, 2003 (1393).

    Article  Google Scholar 

  29. A. M. Limarga, D. S. Wilkinson and G. C. Weatherly, Scripta Materialia 50, 2004 (1475).

    Article  Google Scholar 

  30. F. N. Rhines and J. S. Wolf, Metallurgical and Materials Transactions 1, 1970 (1701).

    Article  Google Scholar 

  31. B. Pieraggi and R. A. Rapp, Acta Metallurgica 36, 1988 (1281).

    Article  Google Scholar 

  32. J. Robertson, Corrosion Science 32, 1991 (443).

    Article  Google Scholar 

  33. P. Kofstad, Oxidation of Metals 24, 1985 (265).

    Article  Google Scholar 

  34. A. Atkinson and D. W. Smart, Journal of The Electrochemical Society 135, 1988 (2886).

    Article  Google Scholar 

  35. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant and G. Picard, Corrosion Science 50, 2008 (2523).

    Article  Google Scholar 

  36. D. J. Young, High Temperature Oxidation and Corrosion of Metals. in Corrosion Series, vol. 1, ed. T. Burstein (Elsevier Science, Amsterdam, 2008).

    Google Scholar 

  37. I. G. Wright, J. Y. Howe and A. S. Sabau, Materials at High Temperatures 26, 2009 (105).

    Article  Google Scholar 

  38. W. Christl, A. Rahmel and M. Schütze, Oxidation of Metals 31, 1989 (35).

    Article  Google Scholar 

  39. V. K. Tolpygo, J. R. Dryden and D. R. Clarke, Acta Materialia 46, 1998 (927).

    Article  Google Scholar 

  40. M. V. Speight and J. E. Harris, Acta Metallurgica 26, 1978 (1043).

    Article  Google Scholar 

  41. P. Ampornrat and G. S. Was, Journal of Nuclear Materials 371, 2007 (1).

    Article  Google Scholar 

  42. W. J. Quadakkers, P. J. Ennis, J. Żurek and M. Michalik, Materials at High Temperatures 22, 2005 (47).

    Google Scholar 

  43. R. J. Ehlers, E. J. Smaardijk, H. J. Penkala, A. K. Tyagi, L. Singheiser, W. J. Quadakkers, Effect of steel composition on the bell-shape temperature dependence of oxidation in water vapour containing environments, in: Proceedings of the International Corrosion Congress, Cape Town, Proceedings, Paper 336.

  44. J. Żurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 63, 2005 (401).

    Article  Google Scholar 

  45. H. E. Evans, Materials Science and Technology 4, 1988 (1089).

    Article  Google Scholar 

  46. L. Tomlinson and N. J. Cory, Corrosion Science 29, 1989 (939).

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by National Natural Science Foundation of China (51471069), Natural Science Foundation of Beijing (2152029) and the Fundamental Research Funds for the Central Universities (2015ZZD05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Xu, H., Jiang, D. et al. Temperature Dependence of Oxidation Behaviour of a Ferritic–Martensitic Steel in Supercritical Water at 600–700 °C. Oxid Met 86, 483–496 (2016). https://doi.org/10.1007/s11085-016-9647-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9647-7

Keywords

Navigation