Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy

Abstract

Oxidation of the Cr20Mn20Fe20Co20Ni20 (at%) high-entropy alloy (HEA) was investigated at 500–900 °C in laboratory air. At 600 °C the oxide was mainly Mn2O3 with a thin inner Cr2O3 layer; at 700 and 800 °C it was mainly Mn2O3 with some Cr enrichment; at 900 °C it was Mn3O4. The oxidation rate was initially linear but became parabolic at longer times with an activation energy of 130 kJ/mol, comparable to that of Mn diffusion in Mn oxides but much lower than that for sluggish diffusion of Mn in the HEA. The diffusion of Mn through the oxide is considered to be the rate-limiting process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    K. Y. Tsai, M. H. Tsai, and J. W. Yeh, Acta Materialia 61, 4887 (2013). doi:10.1016/j.actamat.2013.04.058.

    Article  Google Scholar 

  2. 2.

    J. Y. He, C. Zhu, D. Q. Zhou, W. H. Liu, T. G. Nieh, and Z. P. Lu, Intermetallics 55, 9 (2014). doi:10.1016/j.intermet.2014.06.015.

    Article  Google Scholar 

  3. 3.

    O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, and D. B. Miracle, Journal of Materials Science 47, 6522 (2012). doi:10.1007/s10853-012-6582-0.

    Article  Google Scholar 

  4. 4.

    P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, Advanced Engineering Materials 6, 74 (2004). doi:10.1002/adem.200300507.

    Article  Google Scholar 

  5. 5.

    C. M. Liu, H. M. Wang, S. Q. Zhang, H. B. Tang, and A. L. Zhang, Journal of Alloys and Compounds 583, 162 (2014). doi:10.1016/j.jallcom.2013.08.102.

    Article  Google Scholar 

  6. 6.

    B. Gorr, M. Azim, H. J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier, Journal of Alloys and Compounds 624, 270 (2015). doi:10.1016/j.jallcom.2014.11.012.

    Article  Google Scholar 

  7. 7.

    Y.-X. Liu, C.-Q. Cheng, J.-L. Shang, R. Wang, P. Li, and J. Zhao, Transactions of Nonferrous Metals Society of China 25, 1341 (2015). doi:10.1016/S1003-6326(15)63733-5.

    Article  Google Scholar 

  8. 8.

    G. Holcomb, J. Tylczak, and C. Carney, JOM 67, 2326 (2015). doi:10.1007/s11837-015-1517-2.

    Article  Google Scholar 

  9. 9.

    T. M. Butler, J. P. Alfano, R. L. Martens, and M. L. Weaver, JOM 67, 246 (2015). doi:10.1007/s11837-014-1185-7.

    Article  Google Scholar 

  10. 10.

    Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh, and H. C. Shih, Corrosion Science 47, 2257 (2005). doi:10.1016/j.corsci.2004.11.008.

    Article  Google Scholar 

  11. 11.

    Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh, and T. Duval, Corrosion Science 47, 2679 (2005). doi:10.1016/j.corsci.2004.09.026.

    Article  Google Scholar 

  12. 12.

    C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, and H. C. Shih, Corrosion Science 50, 2053 (2008). doi:10.1016/j.corsci.2008.04.011.

    Article  Google Scholar 

  13. 13.

    Y. L. Chou, Y. C. Wang, J. W. Yeh, and H. C. Shih, Corrosion Science 52, 3481 (2010). doi:10.1016/j.corsci.2010.06.025.

    Article  Google Scholar 

  14. 14.

    Y. L. Chou, J. W. Yeh, and H. C. Shih, Corrosion Science 52, 2571 (2010). doi:10.1016/j.corsci.2010.04.004.

    Article  Google Scholar 

  15. 15.

    Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, Corrosion Science 52, 1026 (2010). doi:10.1016/j.corsci.2009.11.028.

    Article  Google Scholar 

  16. 16.

    F. Otto, Y. Yang, H. Bei, and E. P. George, Acta Materialia 61, 2628 (2013). doi:10.1016/j.actamat.2013.01.042.

    Article  Google Scholar 

  17. 17.

    M. J. Yao, K. G. Pradeep, C. C. Tasan, and D. Raabe, Scripta Materialia 72–73, 5 (2014). doi:10.1016/j.scriptamat.2013.09.030.

    Article  Google Scholar 

  18. 18.

    F. Otto, N. L. Hanold, and E. P. George, Intermetallics 54, 39 (2014). doi:10.1016/j.intermet.2014.05.014.

    Article  Google Scholar 

  19. 19.

    A. Haglund, M. Koehler, D. Catoor, E. P. George, and V. Keppens, Intermetallics 58, 62 (2015). doi:10.1016/j.intermet.2014.11.005.

    Article  Google Scholar 

  20. 20.

    G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E. P. George, Journal of Alloys and Compounds 623, 348 (2015). doi:10.1016/j.jallcom.2014.11.061.

    Article  Google Scholar 

  21. 21.

    G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E. P. George, Journal of Alloys and Compounds 647, 548 (2015). doi:10.1016/j.jallcom.2015.05.129.

    Article  Google Scholar 

  22. 22.

    D. Ma, M. Yao, K. G. Pradeep, C. C. Tasan, H. Springer, and D. Raabe, Acta Materialia 98, 288 (2015). doi:10.1016/j.actamat.2015.07.030.

    Article  Google Scholar 

  23. 23.

    Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Acta Materialia 94, 124 (2015). doi:10.1016/j.actamat.2015.04.014.

    Article  Google Scholar 

  24. 24.

    B. Schuh, F. Mendez-Martin, B. Völker, E. P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Acta Materialia 96, 258 (2015). doi:10.1016/j.actamat.2015.06.025.

    Article  Google Scholar 

  25. 25.

    M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, and Y. Champion, Acta Materialia 88, 355 (2015). doi:10.1016/j.actamat.2015.01.068.

    Article  Google Scholar 

  26. 26.

    G. D. Sathiaraj and P. P. Bhattacharjee, Journal of Alloys and Compounds 637, 267 (2015). doi:10.1016/j.jallcom.2015.02.184.

    Article  Google Scholar 

  27. 27.

    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E. P. George, Acta Materialia 61, 5743 (2013). doi:10.1016/j.actamat.2013.06.018.

    Article  Google Scholar 

  28. 28.

    A. Gali and E. P. George, Intermetallics 39, 74 (2013). doi:10.1016/j.intermet.2013.03.018.

    Article  Google Scholar 

  29. 29.

    N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov and G. Salishchev, Intermetallics 59, 8 (2015). doi:10.1016/j.intermet.2014.12.004.

    Article  Google Scholar 

  30. 30.

    Z. Wu, H. Bei, G. M. Pharr, and E. P. George, Acta Materialia 81, 428 (2014). doi:10.1016/j.actamat.2014.08.026.

    Article  Google Scholar 

  31. 31.

    B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, Science 345, 1153 (2014). doi:10.1126/science.1254581.

    Article  Google Scholar 

  32. 32.

    A. Rist, M.F. Ancey-Moret, C. Gatellier, and P.V. Riboud, Techniques de l’Ingénieur M1730a (1974).

  33. 33.

    R. K. Wild, Corrosion Science 17, 87 (1977). doi:10.1016/0010-938X(77)90011-7.

    Article  Google Scholar 

  34. 34.

    F. H. Stott, F. I. Wei, and C. A. Enahoro, Materials and Corrosion 40, 198 (1989). doi:10.1002/maco.19890400403.

    Article  Google Scholar 

  35. 35.

    A. L. Marasco and D. J. Young, Oxidation of Metals 36, 157 (1991). doi:10.1007/BF00938460.

    Article  Google Scholar 

  36. 36.

    D. L. Douglass, F. Gesmundo, and C. de Asmundis, Oxidation of Metals 25, 235 (1986). doi:10.1007/BF00655899.

    Article  Google Scholar 

  37. 37.

    D. L. Douglass and F. Rizzo-Assuncao, Oxidation of Metals 29, 271 (1988). doi:10.1007/BF00751800.

    Article  Google Scholar 

  38. 38.

    Standard pratice for calibration of temperature scale for thermogravimetry, in: American Society for Testing and Materials, 2014.

  39. 39.

    P. Kofstad, High temperature corrosion, (Elsevier applied science publishers, New York, 1988).

    Google Scholar 

  40. 40.

    P. J. Potts, A handbook of silicate rock analysis, (Blackie, Glasgow, 1987).

    Google Scholar 

  41. 41.

    D. H. Speidel and A. Muan, Journal of the American Ceramic Society 46, 577 (1963).

    Article  Google Scholar 

  42. 42.

    R. S. Roth, Phase equilibria diagrams (The American Ceramic Society, Westerville, 1995).

    Google Scholar 

  43. 43.

    A. Petric and H. Ling, Journal of the American Ceramic Society 90, 1515 (2007). doi:10.1111/j.1551-2916.2007.01522.x.

    Article  Google Scholar 

  44. 44.

    P. R. S. Jackson and G. R. Wallwork, Oxidation of Metals 21, 135 (1984). doi:10.1007/BF00741468.

    Article  Google Scholar 

  45. 45.

    J.-G. Duh, J. W. Lee, and C.-J. Wang, Journal of Materials Science 23, 2649 (1988). doi:10.1007/BF01111928.

    Article  Google Scholar 

  46. 46.

    J. G. Duh and C. J. Wang, Journal of Materials Science 25, 268 (1990). doi:10.1007/BF00544219.

    Article  Google Scholar 

  47. 47.

    J. Y. Liu and S. C. Chang, Corrosion Science 39, 1021 (1997). doi:10.1016/S0010-938X(96)00083-2.

    Article  Google Scholar 

  48. 48.

    C.-J. Wang and Y.-C. Chang, Materials Chemistry and Physics 76, 151 (2002). doi:10.1016/S0254-0584(01)00515-6.

    Article  Google Scholar 

  49. 49.

    Z. Wu, H. Bei, F. Otto, G. M. Pharr, and E. P. George, Intermetallics 46, 131 (2014). doi:10.1016/j.intermet.2013.10.024.

    Article  Google Scholar 

  50. 50.

    O. T. Goncel, D. P. Whittle, and J. Stringer, Corrosion Science 19, 305 (1979). doi:10.1016/0010-938X(79)90023-4.

    Article  Google Scholar 

  51. 51.

    V. R. Howes and C. N. Richardson, Corrosion Science 9, 385 (1969). doi:10.1016/S0010-938X(69)80034-X.

    Article  Google Scholar 

  52. 52.

    C. Lowell and D. Deadmore, Oxidation of Metals 7, 55 (1973). doi:10.1007/BF00611984.

    Article  Google Scholar 

  53. 53.

    D. G. Lees and J. M. Calvert, Corrosion Science 16, 767 (1976). doi:10.1016/0010-938X(76)90008-1.

    Google Scholar 

  54. 54.

    J. Païdassi and A. Echeverría, Acta Metallurgica 7, 293 (1959). doi:10.1016/0001-6160(59)90024-0.

    Article  Google Scholar 

  55. 55.

    N. L. Peterson and W. K. Chen, Journal of Physics and Chemistry of Solids 43, 29 (1982). doi:10.1016/0022-3697(82)90170-6.

    Article  Google Scholar 

Download references

Acknowledgments

G.L. acknowledges funding by the German Research Foundation through project LA 3607/1-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Laplanche.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laplanche, G., Volkert, U.F., Eggeler, G. et al. Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy. Oxid Met 85, 629–645 (2016). https://doi.org/10.1007/s11085-016-9616-1

Download citation

Keywords

  • CoCrFeMnNi high-entropy alloy
  • External oxidation
  • Nodules
  • Manganese oxides
  • Thermogravimetric analysis (TGA)
  • Diffusion