Advertisement

Oxidation of Metals

, Volume 85, Issue 5–6, pp 629–645 | Cite as

Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy

  • G. LaplancheEmail author
  • U. F. Volkert
  • G. Eggeler
  • E. P. George
Original Paper

Abstract

Oxidation of the Cr20Mn20Fe20Co20Ni20 (at%) high-entropy alloy (HEA) was investigated at 500–900 °C in laboratory air. At 600 °C the oxide was mainly Mn2O3 with a thin inner Cr2O3 layer; at 700 and 800 °C it was mainly Mn2O3 with some Cr enrichment; at 900 °C it was Mn3O4. The oxidation rate was initially linear but became parabolic at longer times with an activation energy of 130 kJ/mol, comparable to that of Mn diffusion in Mn oxides but much lower than that for sluggish diffusion of Mn in the HEA. The diffusion of Mn through the oxide is considered to be the rate-limiting process.

Keywords

CoCrFeMnNi high-entropy alloy External oxidation Nodules Manganese oxides Thermogravimetric analysis (TGA) Diffusion 

Notes

Acknowledgments

G.L. acknowledges funding by the German Research Foundation through project LA 3607/1-1.

References

  1. 1.
    K. Y. Tsai, M. H. Tsai, and J. W. Yeh, Acta Materialia 61, 4887 (2013). doi: 10.1016/j.actamat.2013.04.058.CrossRefGoogle Scholar
  2. 2.
    J. Y. He, C. Zhu, D. Q. Zhou, W. H. Liu, T. G. Nieh, and Z. P. Lu, Intermetallics 55, 9 (2014). doi: 10.1016/j.intermet.2014.06.015.CrossRefGoogle Scholar
  3. 3.
    O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, and D. B. Miracle, Journal of Materials Science 47, 6522 (2012). doi: 10.1007/s10853-012-6582-0.CrossRefGoogle Scholar
  4. 4.
    P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, Advanced Engineering Materials 6, 74 (2004). doi: 10.1002/adem.200300507.CrossRefGoogle Scholar
  5. 5.
    C. M. Liu, H. M. Wang, S. Q. Zhang, H. B. Tang, and A. L. Zhang, Journal of Alloys and Compounds 583, 162 (2014). doi: 10.1016/j.jallcom.2013.08.102.CrossRefGoogle Scholar
  6. 6.
    B. Gorr, M. Azim, H. J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier, Journal of Alloys and Compounds 624, 270 (2015). doi: 10.1016/j.jallcom.2014.11.012.CrossRefGoogle Scholar
  7. 7.
    Y.-X. Liu, C.-Q. Cheng, J.-L. Shang, R. Wang, P. Li, and J. Zhao, Transactions of Nonferrous Metals Society of China 25, 1341 (2015). doi: 10.1016/S1003-6326(15)63733-5.CrossRefGoogle Scholar
  8. 8.
    G. Holcomb, J. Tylczak, and C. Carney, JOM 67, 2326 (2015). doi: 10.1007/s11837-015-1517-2.CrossRefGoogle Scholar
  9. 9.
    T. M. Butler, J. P. Alfano, R. L. Martens, and M. L. Weaver, JOM 67, 246 (2015). doi: 10.1007/s11837-014-1185-7.CrossRefGoogle Scholar
  10. 10.
    Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh, and H. C. Shih, Corrosion Science 47, 2257 (2005). doi: 10.1016/j.corsci.2004.11.008.CrossRefGoogle Scholar
  11. 11.
    Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh, and T. Duval, Corrosion Science 47, 2679 (2005). doi: 10.1016/j.corsci.2004.09.026.CrossRefGoogle Scholar
  12. 12.
    C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, and H. C. Shih, Corrosion Science 50, 2053 (2008). doi: 10.1016/j.corsci.2008.04.011.CrossRefGoogle Scholar
  13. 13.
    Y. L. Chou, Y. C. Wang, J. W. Yeh, and H. C. Shih, Corrosion Science 52, 3481 (2010). doi: 10.1016/j.corsci.2010.06.025.CrossRefGoogle Scholar
  14. 14.
    Y. L. Chou, J. W. Yeh, and H. C. Shih, Corrosion Science 52, 2571 (2010). doi: 10.1016/j.corsci.2010.04.004.CrossRefGoogle Scholar
  15. 15.
    Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, Corrosion Science 52, 1026 (2010). doi: 10.1016/j.corsci.2009.11.028.CrossRefGoogle Scholar
  16. 16.
    F. Otto, Y. Yang, H. Bei, and E. P. George, Acta Materialia 61, 2628 (2013). doi: 10.1016/j.actamat.2013.01.042.CrossRefGoogle Scholar
  17. 17.
    M. J. Yao, K. G. Pradeep, C. C. Tasan, and D. Raabe, Scripta Materialia 72–73, 5 (2014). doi: 10.1016/j.scriptamat.2013.09.030.CrossRefGoogle Scholar
  18. 18.
    F. Otto, N. L. Hanold, and E. P. George, Intermetallics 54, 39 (2014). doi: 10.1016/j.intermet.2014.05.014.CrossRefGoogle Scholar
  19. 19.
    A. Haglund, M. Koehler, D. Catoor, E. P. George, and V. Keppens, Intermetallics 58, 62 (2015). doi: 10.1016/j.intermet.2014.11.005.CrossRefGoogle Scholar
  20. 20.
    G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E. P. George, Journal of Alloys and Compounds 623, 348 (2015). doi: 10.1016/j.jallcom.2014.11.061.CrossRefGoogle Scholar
  21. 21.
    G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E. P. George, Journal of Alloys and Compounds 647, 548 (2015). doi: 10.1016/j.jallcom.2015.05.129.CrossRefGoogle Scholar
  22. 22.
    D. Ma, M. Yao, K. G. Pradeep, C. C. Tasan, H. Springer, and D. Raabe, Acta Materialia 98, 288 (2015). doi: 10.1016/j.actamat.2015.07.030.CrossRefGoogle Scholar
  23. 23.
    Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Acta Materialia 94, 124 (2015). doi: 10.1016/j.actamat.2015.04.014.CrossRefGoogle Scholar
  24. 24.
    B. Schuh, F. Mendez-Martin, B. Völker, E. P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Acta Materialia 96, 258 (2015). doi: 10.1016/j.actamat.2015.06.025.CrossRefGoogle Scholar
  25. 25.
    M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, and Y. Champion, Acta Materialia 88, 355 (2015). doi: 10.1016/j.actamat.2015.01.068.CrossRefGoogle Scholar
  26. 26.
    G. D. Sathiaraj and P. P. Bhattacharjee, Journal of Alloys and Compounds 637, 267 (2015). doi: 10.1016/j.jallcom.2015.02.184.CrossRefGoogle Scholar
  27. 27.
    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E. P. George, Acta Materialia 61, 5743 (2013). doi: 10.1016/j.actamat.2013.06.018.CrossRefGoogle Scholar
  28. 28.
    A. Gali and E. P. George, Intermetallics 39, 74 (2013). doi: 10.1016/j.intermet.2013.03.018.CrossRefGoogle Scholar
  29. 29.
    N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov and G. Salishchev, Intermetallics 59, 8 (2015). doi: 10.1016/j.intermet.2014.12.004.CrossRefGoogle Scholar
  30. 30.
    Z. Wu, H. Bei, G. M. Pharr, and E. P. George, Acta Materialia 81, 428 (2014). doi: 10.1016/j.actamat.2014.08.026.CrossRefGoogle Scholar
  31. 31.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, Science 345, 1153 (2014). doi: 10.1126/science.1254581.CrossRefGoogle Scholar
  32. 32.
    A. Rist, M.F. Ancey-Moret, C. Gatellier, and P.V. Riboud, Techniques de l’Ingénieur M1730a (1974).Google Scholar
  33. 33.
    R. K. Wild, Corrosion Science 17, 87 (1977). doi: 10.1016/0010-938X(77)90011-7.CrossRefGoogle Scholar
  34. 34.
    F. H. Stott, F. I. Wei, and C. A. Enahoro, Materials and Corrosion 40, 198 (1989). doi: 10.1002/maco.19890400403.CrossRefGoogle Scholar
  35. 35.
    A. L. Marasco and D. J. Young, Oxidation of Metals 36, 157 (1991). doi: 10.1007/BF00938460.CrossRefGoogle Scholar
  36. 36.
    D. L. Douglass, F. Gesmundo, and C. de Asmundis, Oxidation of Metals 25, 235 (1986). doi: 10.1007/BF00655899.CrossRefGoogle Scholar
  37. 37.
    D. L. Douglass and F. Rizzo-Assuncao, Oxidation of Metals 29, 271 (1988). doi: 10.1007/BF00751800.CrossRefGoogle Scholar
  38. 38.
    Standard pratice for calibration of temperature scale for thermogravimetry, in: American Society for Testing and Materials, 2014.Google Scholar
  39. 39.
    P. Kofstad, High temperature corrosion, (Elsevier applied science publishers, New York, 1988).Google Scholar
  40. 40.
    P. J. Potts, A handbook of silicate rock analysis, (Blackie, Glasgow, 1987).CrossRefGoogle Scholar
  41. 41.
    D. H. Speidel and A. Muan, Journal of the American Ceramic Society 46, 577 (1963).CrossRefGoogle Scholar
  42. 42.
    R. S. Roth, Phase equilibria diagrams (The American Ceramic Society, Westerville, 1995).Google Scholar
  43. 43.
    A. Petric and H. Ling, Journal of the American Ceramic Society 90, 1515 (2007). doi: 10.1111/j.1551-2916.2007.01522.x.CrossRefGoogle Scholar
  44. 44.
    P. R. S. Jackson and G. R. Wallwork, Oxidation of Metals 21, 135 (1984). doi: 10.1007/BF00741468.CrossRefGoogle Scholar
  45. 45.
    J.-G. Duh, J. W. Lee, and C.-J. Wang, Journal of Materials Science 23, 2649 (1988). doi: 10.1007/BF01111928.CrossRefGoogle Scholar
  46. 46.
    J. G. Duh and C. J. Wang, Journal of Materials Science 25, 268 (1990). doi: 10.1007/BF00544219.CrossRefGoogle Scholar
  47. 47.
    J. Y. Liu and S. C. Chang, Corrosion Science 39, 1021 (1997). doi: 10.1016/S0010-938X(96)00083-2.CrossRefGoogle Scholar
  48. 48.
    C.-J. Wang and Y.-C. Chang, Materials Chemistry and Physics 76, 151 (2002). doi: 10.1016/S0254-0584(01)00515-6.CrossRefGoogle Scholar
  49. 49.
    Z. Wu, H. Bei, F. Otto, G. M. Pharr, and E. P. George, Intermetallics 46, 131 (2014). doi: 10.1016/j.intermet.2013.10.024.CrossRefGoogle Scholar
  50. 50.
    O. T. Goncel, D. P. Whittle, and J. Stringer, Corrosion Science 19, 305 (1979). doi: 10.1016/0010-938X(79)90023-4.CrossRefGoogle Scholar
  51. 51.
    V. R. Howes and C. N. Richardson, Corrosion Science 9, 385 (1969). doi: 10.1016/S0010-938X(69)80034-X.CrossRefGoogle Scholar
  52. 52.
    C. Lowell and D. Deadmore, Oxidation of Metals 7, 55 (1973). doi: 10.1007/BF00611984.CrossRefGoogle Scholar
  53. 53.
    D. G. Lees and J. M. Calvert, Corrosion Science 16, 767 (1976). doi: 10.1016/0010-938X(76)90008-1.Google Scholar
  54. 54.
    J. Païdassi and A. Echeverría, Acta Metallurgica 7, 293 (1959). doi: 10.1016/0001-6160(59)90024-0.CrossRefGoogle Scholar
  55. 55.
    N. L. Peterson and W. K. Chen, Journal of Physics and Chemistry of Solids 43, 29 (1982). doi: 10.1016/0022-3697(82)90170-6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. Laplanche
    • 1
    Email author
  • U. F. Volkert
    • 1
  • G. Eggeler
    • 1
  • E. P. George
    • 1
  1. 1.Institut für Werkstoffe, Ruhr-Universität Bochum44780Germany

Personalised recommendations