The Effects of KCl, NaCl and K2CO3 on the High-Temperature Oxidation Onset of Sanicro 28 Steel

Abstract

The present study investigates the early stages in the oxidation process of Sanicro 28 (Fe31Cr27Ni) stainless steel when exposed to an alkali salt (KCl, NaCl or K2CO3) for 2 h at 450 and 535 °C. After the exposure, the oxidized samples were analyzed with a combinatory method (CA, XPS and SEM–EDX). It was found that all three salts were corrosive, and the overall oxidation reaction rate was much higher at 535 °C than at 450 °C. There were clear differences in terms of the impact of cations (Na+, K+) and anions (Cl, CO3 2−) on the initial corrosion process at both temperatures. When focusing on the cations, the presence of potassium ions resulted in a higher rate of chromate formation than in the presence of sodium ions. When studying the effect of anions, the oxidation of iron and chromium occurred at higher rates in the presence of both chloride salts than in the presence of the carbonate salt, and chloride salts seemed to possess higher diffusion rate in the gas phase and along the surface than carbonate salts. Moreover, at the higher temperature of 535 °C, the formed chromate reacted further to chromium oxide, and an ongoing oxidation process of iron and chromium was identified with a significantly higher reaction rate than at 450 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

References

  1. 1.

    Official Statistics of Finland (OSF): Production of electricity and heat. Statistics Finland, Helsinki (2013).

  2. 2.

    R. A. Antunes and M. C. L. de Oliveira, Corrosion Science 76, 6 (2013).

    Article  Google Scholar 

  3. 3.

    B. J. Skrifvars, R. Backman, M. Hupa, K. Salmenoja and E. Vakkilainen, Corrosion Science 50, 1274 (2008).

    Article  Google Scholar 

  4. 4.

    M. Spiegel, Materials and Corrosion 50, 373 (1999).

    Article  Google Scholar 

  5. 5.

    H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, et al., Progress in Energy and Combustion Science 26, 283 (2000).

    Article  Google Scholar 

  6. 6.

    S. Karlsson, J. Pettersson, L. G. Johansson and J. E. Svensson, Oxidation of Metals 78, 83 (2012).

    Article  Google Scholar 

  7. 7.

    D. Bankiewicz, S. Enestam, P. Yrjas, et al., Fuel Processing Technology 105, 89 (2013).

    Article  Google Scholar 

  8. 8.

    M. Öhman, A. Nordin, B. J. Skrifvars, et al., Energy & Fuels 14, 169 (2000).

    Article  Google Scholar 

  9. 9.

    C. Pettersson, T. Jonsson, C. Proff, M. Halvarsson, J. E. Svensson and L. G. Johansson, Oxidation of Metals 74, 93 (2010).

    Article  Google Scholar 

  10. 10.

    G. Busca, V. Lorenzelli, G. Ramis and R. J. Willey, Langmuir 9, 1492 (1993).

    Article  Google Scholar 

  11. 11.

    C. Pettersson, J. Pettersson, H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 48, 1368 (2006).

    Article  Google Scholar 

  12. 12.

    C. Pettersson, L. G. Johansson and J. E. Svensson, Oxidation of Metals 70, 241 (2008).

    Article  Google Scholar 

  13. 13.

    S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkeläa and M. Hupa, Fuel 104, 294 (2013).

    Article  Google Scholar 

  14. 14.

    J. Lehmusto, P. Yrjas, B. J. Skrifvars and M. Hupa, Fuel Processing Technology 104, 253 (2012).

    Article  Google Scholar 

  15. 15.

    J. Lehmusto, B. J. Skrifvars, P. Yrjas, et al., Fuel Processing Technology 105, 98 (2013).

    Article  Google Scholar 

  16. 16.

    J. Pettersson, N. Folkeson, L. G. Johansson and J. E. Svensson, Oxidation of Metals 76, 93 (2011).

    Article  Google Scholar 

  17. 17.

    A. Ruh and M. Spiegel, Corrosion Science 48, 679 (2006).

    Article  Google Scholar 

  18. 18.

    J. Lehmusto, D. Lindberg, P. Yrjas, B. J. Skrifvars and M. Hupa, Corrosion Science 59, 55 (2012).

    Article  Google Scholar 

  19. 19.

    T. Jonsson, N. Folkeson, J. E. Svensson, L. G. Johansson and M. Halvarsson, Corrosion Science 53, 2233 (2011).

    Article  Google Scholar 

  20. 20.

    N. Israelsson, K. Hellström, J. E. Svensson and L. G. Johansson, Oxidation of Metals 83, 1 (2014).

    Article  Google Scholar 

  21. 21.

    K. Hladky and J. Dawson, Corrosion Science 21, 317 (1981).

    Article  Google Scholar 

  22. 22.

    J. Sui, J. Lehmusto, M. Bergelin and M. Hupa, Oxidation of Metals 82, 437 (2014).

    Article  Google Scholar 

  23. 23.

    D. R. Baer, M. H. Engelhard, A. S. Lea, et al., Journal of Vacuum Science & Technology A 28, 1060 (2010).

    Article  Google Scholar 

  24. 24.

    A. Hermas, Corrosion Science 50, 2498 (2008).

    Article  Google Scholar 

  25. 25.

    C. Proff, T. Jonsson, C. Pettersson, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Materials at High Temperatures 26, 113 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Mr. Linus Silvander for operating the SEM-EDXA apparatus and Mr. Jyrki Juhanoja from Top Analytica Oy Ab for operating the XPS apparatus. This work has been carried out within CLIFF (2014-2017) as part of the activities of Åbo Akademi University. Other research partners are VTT Technical Research Centre of Finland, Lappeenranta University of Technology, Aalto University and Tampere University of Technology. Support from the National Technology Agency of Finland (Tekes), Andritz Oy, Valmet Power Oy, Foster Wheeler Energia Oy, UPM-Kymmene Oyj, Clyde Bergemann GmbH, International Paper Inc., 3motion Oy and Top Analytica Oy Ab is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingxin Sui.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sui, J., Lehmusto, J., Bergelin, M. et al. The Effects of KCl, NaCl and K2CO3 on the High-Temperature Oxidation Onset of Sanicro 28 Steel. Oxid Met 85, 565–598 (2016). https://doi.org/10.1007/s11085-016-9613-4

Download citation

Keywords

  • High temperature oxidation
  • Alkali salts
  • Sanicro 28
  • Corrosion onset