Skip to main content
Log in

Effects of Cr–Si Diffusion Barrier Layer on the Oxidation Resistance of NiCrAlY Coating System with Aluminized Top Layer

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A multilayer coating, which consisted of a Cr–Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrAlY middle layer, and an aluminized top layer, was developed. During the aluminizing treatment, Cr in the NiCrAlY layer was released as the γ/γ′ structure of this layer transformed to the β phase. The released Cr was inhibited by the inner Cr–Si layer to diffuse into the substrate, and a Cr layer eventually formed over the Cr–Si layer. The Cr layer impeded the inward diffusion of Al due to the low solubility of Al in the Cr layer so that more Al atoms remain in the coating and contributed to the oxidation resistance of the coating. The multilayer coating exhibited better oxidation and spallation resistance than coatings without a Cr–Si layer, at least at 1050 °C for up to 1000 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. I. G. Wright and T. B. Gibbons, International Journal of Hydrogen Energy 32, 3610 (2007).

    Article  Google Scholar 

  2. E. Y. Lee, D. M. Charter, R. R. Biederman and R. D. Sisson Jr, Surface and Coatings Technology 32, 19 (1987).

    Article  Google Scholar 

  3. B. Wang, J. Gong, C. Sun, R. F. Huang and L. S. Wen, Surface and Coatings Technology 149, 70 (2002).

    Article  Google Scholar 

  4. A. S. Suzuki, G. D. West, and R. C. Thomson, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference (EPRI 2013), eds. D. I. Gandy, and J. Shingledecker, (ASM International, Waikoloa, 2014), p. 371.

  5. E. Cavaletti, S. Naveos, S. Mercier, P. Josso, M. P. Bacos and D. Monceau, Surface and Coatings Technology 204, 76 (2009).

    Article  Google Scholar 

  6. O. Knotek, F. Loffler and W. Beele, Surface and Coatings Technology 61, 6 (1993).

    Article  Google Scholar 

  7. M. Schütze, M. Malessa, V. Rohr and T. Weber, Surface and Coatings Technology 201, 3872 (2006).

    Article  Google Scholar 

  8. T. Narita, K. Z. Thosin, L. F. Qun, S. Hayashi, H. Murakami, B. Gleeson and D. Young, Materials and Corrosion 56, 923 (2005).

    Article  Google Scholar 

  9. Q. M. Wang, Y. N. Wu, M. H. Guo, P. L. Ke, J. Gong, C. Sun and L. S. Wen, Surface and Coatings Technology 197, 68 (2005).

    Article  Google Scholar 

  10. R. Cremer, M. Witthaut, K. Reichert, M. Schierling and D. Neuschutz, Surface and Coatings Technology 108–109, 48 (1998).

    Article  Google Scholar 

  11. J. Muller and D. Neuschutz, Vacuum 71, 247 (2003).

    Article  Google Scholar 

  12. W. Z. Li, Y. Yao, Q. M. Wang, Z. B. Bao, J. Gong, C. Sun and X. Jiang, Journal of Materials Research 23, 341 (2008).

    Article  Google Scholar 

  13. Y. Wu, Y. M. Wang, G. M. Song and X. W. Li, Oxidation of Metals 76, 419 (2011).

    Article  Google Scholar 

  14. D. Sumoyama, K. Z. Thosin, T. Nishimoto and T. Yoshioka, Oxidation of Metals 68, 313 (2007).

    Article  Google Scholar 

  15. J. A. Haynes, Y. Zhang, K. M. Cooley, L. Walker, K. S. Reeves and B. A. Pint, Surface and Coatings Technology 188–189, 153 (2004).

    Article  Google Scholar 

  16. J. Ma, S. Jiang, J. Gong and C. Sun, Corrosion Science 53, 2894 (2011).

    Article  Google Scholar 

  17. D. Yoshida, Y. Shibata, S. Hayashi and T. Narita, Oxidation of Metals 64, 119 (2005).

    Article  Google Scholar 

  18. K. P. Gupta, Journal of Phase Equilibria 27, 523 (2006).

    Article  Google Scholar 

  19. B. Grushko, W. Kowalski, D. Pavlyuchkov, B. Przepiorzynski and M. Surowiec, Journal of Alloys and Compounds 460, 299 (2008).

    Article  Google Scholar 

  20. F. Gao, Q. Yang, R. Liu and X. Huang, Surface Engineering 30, 625 (2014).

    Google Scholar 

  21. C. T. Liu, J. Ma, X. F. Sun and P. C. Zhao, Surface and Coatings Technology 204, 3641 (2010).

    Article  Google Scholar 

  22. M. J. Li, X. F. Sun, H. R. Guan, X. X. Jiang and Z. Q. Hu, Surface and Coatings Technology 185, 172 (2004).

    Article  Google Scholar 

  23. P. Saltykov, O. Fabrichnaya, J. Golczewski and F. Aldinger, Journal of Alloys and Compounds 381, 99 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Huang, X., Yang, Q. et al. Effects of Cr–Si Diffusion Barrier Layer on the Oxidation Resistance of NiCrAlY Coating System with Aluminized Top Layer. Oxid Met 85, 425–442 (2016). https://doi.org/10.1007/s11085-015-9604-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9604-x

Keywords

Navigation