Skip to main content
Log in

Improvement in High Temperature Oxidation Resistance of 9 %Cr Ferritic–Martensitic Steel by Enhanced Diffusion of Mn

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature oxidation behavior of coarse-grained (CG) and ultrafine-grained (UFG) 9 %Cr ferritic-martensitic steel in air at 923 K up to 500 h was investigated. The UFG sample showed considerably greater oxidation resistance than the CG sample due to the fact that the outward diffusion of Mn was enhanced and the formation of Mn-rich oxide favored in the former. A duplex-layered scale structure consisting of an outer Fe-rich (Fe, Cr)2O3 layer and an inner Cr-rich (Fe, Cr)2O3 layer was identified on the CG sample, while a thin compact scale with a mixture of (Fe, Cr)2O3, MnCr2O4 and Mn2O3 oxides developed on the UFG sample. A continuous and stable scale composed of Cr-rich (Fe, Cr)2O3 and MnCr2O4 on the UFG sample in the early stage served as a protective barrier between the matrix and environment. With increased oxidation time, formation of Mn2O3 with low growth rate improved the compactness of oxide scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Martinelli, F. Baibaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant and G. Picard, Corrosion Science 50, 2523 (2008).

    Article  Google Scholar 

  2. L. Tan and T. R. Allen, Corrosion Science 51, 2503 (2009).

    Article  Google Scholar 

  3. Q. Shi, J. Liu, W. Wang, W. Yan, Y. Shan and K. Yang, Oxidation of Metals 83, 521 (2015).

    Article  Google Scholar 

  4. R. L. Klueh and D. R. Harries, High-chromium Ferritic and Martensitic Steels for Nuclear Applications, (American Society for Testing and Materials, West Conshohocken, 2001).

    Book  Google Scholar 

  5. R. L. Klueh and A. T. Nelson, Journal of Nuclear Materials 371, 37 (2007).

    Article  Google Scholar 

  6. A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz and K. Ehrlich, Journal of Nuclear Materials 233–237, 138 (1996).

    Article  Google Scholar 

  7. S. Swaminathan, C. Mallika, N. G. Krishna, C. Thinaharan, T. Jayakumar and U. K. Mudali, Corrosion Science 79, 59 (2014).

    Article  Google Scholar 

  8. S. R. Pillai, N. S. Barasi, H. S. Khatak and J. B. Gnanamoorthy, Oxidation of Metals 49, 509 (1998).

    Article  Google Scholar 

  9. M. P. Brady, B. Gleeson and I. G. Wright, JOM 52, 16 (2000).

    Article  Google Scholar 

  10. T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, 125 (2004).

    Article  Google Scholar 

  11. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 73, 319 (2010).

    Article  Google Scholar 

  12. D. L. Smith, J.-H. Park, I. Lyublinski, V. Evtikhin, A. Perujo, H. Glassbrenner, T. Terai and S. Zinkle, Fusion Engineering and Design 61–62, 629 (2002).

    Article  Google Scholar 

  13. E. NʼDah, S. Tsipas, M.P. Hierro and F.J. Pérez, Corrosion Science 49, 2007 (3850).

  14. A. Kostka, K.-G. Tak, R. J. Hellmig, Y. Estrin and G. Eggeler, Acta Materialia 55, 539 (2007).

    Article  Google Scholar 

  15. M. Song, Y. D. Wu, D. Chen, X. M. Wang, C. Sun, K. Y. Yu, Y. Chen, L. Shao, Y. Yang, K. T. Hartwig and X. Zhang, Acta Materialia 74, 285 (2014).

    Article  Google Scholar 

  16. M. Song, R. Zhu, D. C. Foley, C. Sun, Y. Chen, K. T. Hartwig and X. Zhang, Journal of Materials Science 48, 7360 (2013).

    Article  Google Scholar 

  17. S. Chen, X. Jin and L. Rong, Material Science and Engineering A 631, 139 (2015).

    Article  Google Scholar 

  18. R. K. Singh Raman, A. S. Khanna, R. K. Tiwari and J. B. Gnanamoorthy, Oxidation of Metals 37, 1 (1992).

    Article  Google Scholar 

  19. R. K. Singh Raman, A. S. Khanna and J. B. Gnanamoorthy, Journal of Materials Science Letters 9, 353 (1990).

    Article  Google Scholar 

  20. V. Trindade, H. Christ and U. Krupp, Oxidation of Metals 73, 551 (2010).

    Article  Google Scholar 

  21. L. Liu, Z. Yang, C. Zhang, M. Ueda, K. Kawamura and T. Maruyama, Corrosion Science 91, 915 (2015).

    Article  Google Scholar 

  22. R. K. Singh Raman and J. B. Gnanamoorthy, Oxidation of Metals 38, 483 (1992).

    Article  Google Scholar 

  23. R. K. Gupta, R. K. Singh Raman and C. C. Koch, Journal of Materials Science 45, 4884 (2010).

    Article  Google Scholar 

  24. R. K. Gupta and N. Birbilis, Corrosion Science 92, 1 (2015).

    Article  Google Scholar 

  25. X. Peng, J. Yan, Y. Zhou and F. Wang, Acta Materialia 53, 5079 (2005).

    Article  Google Scholar 

  26. S. Chen and L. Rong, Journal of Nuclear Materials 459, 13 (2015).

    Article  Google Scholar 

  27. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, (Perkin-Elmer Corp, Eden Prairie, 1995).

    Google Scholar 

  28. R. K. Gupta, N. Birbilis and J. Zhang, Oxidation resistance of nanocrystalline alloys. in Corrosion Resistance, ed. H. Shin (Intech Publisher, Rijeka, 2012), pp. 213–238.

    Google Scholar 

  29. R. K. Gupta, R. K. Singh Raman, C. C. Koch and B. S. Murty, International Journal of Electrochemical Science 8, 6791 (2013).

    Google Scholar 

  30. P. Liu, W. Xing, X. Cheng, D. Li, Y. Li and X.-Q. Chen, Physical Review B 90, 024103 (2014).

    Article  Google Scholar 

  31. Z. Oksiuta, Journal of Materials Science 48, 4801 (2013).

    Article  Google Scholar 

  32. J. G. Goedjen and D. A. Shores, Oxidation of Metals 37, 125 (1992).

    Article  Google Scholar 

  33. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  Google Scholar 

  34. F. J. Pérez, M. J. Cristóbal and M. P. Hierro, Oxidation of Metals 55, 165 (2001).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91226204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Jin, X. & Rong, L. Improvement in High Temperature Oxidation Resistance of 9 %Cr Ferritic–Martensitic Steel by Enhanced Diffusion of Mn. Oxid Met 85, 189–203 (2016). https://doi.org/10.1007/s11085-015-9596-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9596-6

Keywords

Navigation