Skip to main content
Log in

Effect of SiC Addition on Oxidation Behavior of ZrB2 at 1273 K and 1473 K

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of ZrB2–SiC composites with different contents of SiC addition was investigated at 1273 and 1473 K in air for 12 h in this study. The SiC addition contents ranged from 0 to 30 wt%. The results showed that when ZrB2–SiC composites were oxidized at 1273 K in air, a two-oxide layer-structure forms: a continuous glassy layer and a ZrO2 layer contained unoxidized SiC. When SiC content is 5 and 10 wt%, the glassy layer is mainly composed by B2O3. When SiC content is 20 and 30 wt%, a borosilicate glass could be formed on the top layer, which could improve the oxidation resistance of ZrB2. When ZrB2–SiC composites were oxidized at 1473 K in air, the oxide layer was composed of ZrO2 and SiO2 and unreacted SiC. Additionally, when SiC addition content was higher than 10 wt%, a continuous borosilicate glass layer could be formed on the top of the oxide layer at 1473 K. With the increase of SiC content in ZrB2, the oxide layer thickness decreased at both 1273 and 1473 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. M. Opeka, I. G. Talmy and J. A. Zaykoski, Journal of Materials Science 39, 5887–5904 (2004).

    Article  Google Scholar 

  2. F. Monteverde, A. Bellosi and S. Guicciardi, Journal of the European Ceramic Society 22, 278–288 (2002).

    Google Scholar 

  3. R. A. Cutler, in Engineering Properties of Borides, ed. S. J. Schneider, (ASM International, Materials Park, 1991).

  4. W. C. Tripp and H. C. Graham, Journal of the Electrochemical Society 118, 1195–1209 (1971).

    Article  Google Scholar 

  5. W. G. Fahrenholtz, Journal of the American Ceramic Society 88, 3509–3512 (2005).

    Article  Google Scholar 

  6. S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh and J. A. Salem, Journal of the European Ceramic Society 22, 2757–2767 (2002).

    Article  Google Scholar 

  7. A. K. Kuriakose and J. L. Margrave, Journal of the Electrochemical Society 111, 827–831 (1964).

    Article  Google Scholar 

  8. E. J. Opila and M. C. Halbig, Ceramic Engineering & Science Proceedings 22, 221–228 (2001).

    Article  Google Scholar 

  9. A. L. Chamberlain, W. G. Fahrenholtz and G. E. Hilmas, Refractories Applications Transactions 1, 1–8 (2005).

    Google Scholar 

  10. F. Monteverde and A. Bellosi, Journal of the Electrochemical Society 150, B552–B569 (2003).

    Article  Google Scholar 

  11. D. Sciti, M. Brach and A. Bellosi, Journal of Materials Research 20, 922–930 (2005).

    Article  Google Scholar 

  12. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy and J. A. Zaykoski, Journal of the American Ceramic Society 90, 1347–1364 (2007).

    Article  Google Scholar 

  13. S. S. Hwang, A. L. Vasiliev and N. P. Padture, Materials Science and Engineering: A 464, 216–224 (2007).

    Article  Google Scholar 

  14. P. Hu, W. Guolin and Z. Wang, Corrosion Science 51, 2724–2732 (2009).

    Article  Google Scholar 

  15. W. G. Fahrenholtz, Journal of the American Ceramic Society 90, 143–148 (2007).

    Article  Google Scholar 

  16. A. Rezaie, W. G. Fahrenholtz and G. E. Hilmas, Journal of the American Ceramic Society 89, 3240–3245 (2006).

    Article  Google Scholar 

  17. P. A. Williams, R. Sakidja, J. H. Perepezko and P. Ritt, Journal of the European Ceramic Society 32, 3875–3883 (2012).

    Article  Google Scholar 

  18. W. Han, P. Hu, X. Zhang, J. Hang and S. Meng, Journal of the American Ceramic Society 91, 3328–3334 (2008).

    Article  Google Scholar 

  19. A. Rezaie, W. G. Fahrenholtz and G. E. Hilmas, Journal of the European Ceramic Society 27, 2495–2501 (2007).

    Article  Google Scholar 

  20. W. C. Tripp, H. H. Davis and H. C. Graham, American Ceramic Society Bulletin 52, 612–613 (1973).

    Google Scholar 

  21. W. C. Tripp and H. C. Graham, Journal of the Electrochemical Society 118, 1195–1199 (1968).

    Article  Google Scholar 

  22. C. E. Ramberg, G. Cruciani, K. E. Spear, R. E. Tressler and C. F. Ramberg, Journal of the American Ceramic Society 79, 2897–2911 (1996).

    Article  Google Scholar 

  23. Y. H. Seong, S. J. Lee and D. K. Kim, Journal of the American Ceramic Society 96, 1570–1576 (2013).

    Article  Google Scholar 

  24. K. Shugart, S. Liu, F. Craven and E. Opila, Journal of the American Ceramic Society 98, 287–295 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Kurokawa, K. Effect of SiC Addition on Oxidation Behavior of ZrB2 at 1273 K and 1473 K. Oxid Met 85, 311–320 (2016). https://doi.org/10.1007/s11085-015-9585-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9585-9

Keywords

Navigation