Skip to main content
Log in

Oxidation Resistance of Thermal Barrier Coatings Based on Hollow Alumina Particles

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Thermal barrier coatings were synthesized in a single step process from a slurry containing Al microspheres onto different Ni-based superalloys. Upon growth of the coating a top coat of hollow alumina spheres linked to an aluminium diffused coating through an alumina TGO formed. The isothermal and cyclic oxidation tests at different temperatures (900 till 1100 °C) up to 1000 h or 1500 cycles revealed progressive growth of different thermal oxides depending on the substrate composition. Faster degradation of the coatings occurred in the titanium-rich substrates (e.g. IN-738LC and PWA1483) compared to the titanium-poor ones (CM-247LC and René N5). By comparing with conventional low activity aluminide coatings, it appeared that the incorporation of alloying elements (notably Ti and Ta) to the diffused layers upon the high activity slurry coating process is responsible for such fastest degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. R. Nicholls, MRS Bulletin 28, 659 (2003).

    Article  Google Scholar 

  2. www.particoat.eu. Accessed Jan 2014.

  3. B. Rannou, F. Velasco, S. Guzmán, V. Kolarik and F. Pedraza, Materials Chemistry and Physics 134, 360 (2012).

    Article  Google Scholar 

  4. F. Pedraza, M. Mollard, B. Rannou, J. Balmain, B. Bouchaud and G. Bonnet, Materials Chemistry and Physics 134, 700 (2012).

    Article  Google Scholar 

  5. X. Montero, M. Galetz and M. Schütze, Surface and Coating Technology 206, 1586 (2011).

    Article  Google Scholar 

  6. M. Juez-Lorenzo, V. Kolarik, H. Fietzek and M. Anchústegui, Defect and Diffusion Forum 289–292, 261 (2009).

    Article  Google Scholar 

  7. M. Mollard, B. Rannou, B. Bouchaud, J. Balmain, G. Bonnet and F. Pedraza, Corrosion Science 66, 118 (2013).

    Article  Google Scholar 

  8. B. Rannou, B. Bouchaud, J. Balmain, G. Bonnet and F. Pedraza, Oxidation of Metals 81, 139 (2014).

    Article  Google Scholar 

  9. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  10. S. Geng, F. Wang and S. Zhu, Oxidation of Metals 57, 231 (2002).

    Article  Google Scholar 

  11. J. A. Nychka, D. R. Clarke and G. H. Meier, Materials Science and Engineering A 490, 359 (2008).

    Article  Google Scholar 

  12. G. Bonnet, M. Mollard, B. Rannou, J. Balmain, X. Montero, M. Galetz and M. Schütze, Defect and Diffusion Forum 323–325, 381 (2012).

    Article  Google Scholar 

  13. M. C. Galetz, X. Montero, M. Mollard, M. Günthner, F. Pedraza and M. Schütze, Intermetallics 44, 8 (2014).

    Article  Google Scholar 

  14. V. Kolarik, R. Roussel, M. Juez Lorenzo and H. Fietzek, Materials at High Temperatures 29, 89 (2012).

    Article  Google Scholar 

  15. B. Pieraggi, Oxidation of Metals 27, 177 (1987).

    Article  Google Scholar 

  16. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  Google Scholar 

  17. F. H. Stott, G. C. Wood and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  Google Scholar 

  18. X. Montero, M. C. Galetz and M. Schütze, Oxidation of Metals 80, 635 (2013).

    Article  Google Scholar 

  19. C. M. F. Rae, M. S. Hook and R. C. Reed, Materials Sciences and Engineering A 396, 231 (2005).

    Article  Google Scholar 

  20. B. Bouchaud, J. Balmain and F. Pedraza, Oxidation of Metals 69, 193 (2008).

    Article  Google Scholar 

  21. A. Pfennig and B. Fedelich, Corrosion Science 50, 2484 (2008).

    Article  Google Scholar 

  22. F. Pedraza, Defect and Diffusion Forum 289–292, 277 (2009).

    Article  Google Scholar 

  23. R. C. Pennefather and D. H. Boone, Surface and Coatings Technology 76–77, 47 (1995).

    Article  Google Scholar 

  24. B. Bouchaud, J. Balmain and F. Pedraza, Materials Science Forum 595–598, 11 (2008).

    Article  Google Scholar 

  25. F. J. Pérez, F. Pedraza, M. P. Hierro, J. Balmain and G. Bonnet, Oxidation of Metals 58, 563 (2002).

    Article  Google Scholar 

  26. F. J. Pérez, F. Pedraza, M. P. Hierro, J. Balmain and G. Bonnet, Surface and Coatings Technology 153, 49 (2002).

    Article  Google Scholar 

  27. A. Aguëro, M. Gutiérrez and V. Gonzalez, Materials at High Temperature 25, 257 (2008).

    Article  Google Scholar 

  28. A. Aguëro, Energy Materials 1, 35 (2008).

    Article  Google Scholar 

  29. V. K. Tolpygo and D. R. Clarke, Acta Materialia 48, 3283 (2000).

    Article  Google Scholar 

  30. J. Shi, S. Darzens and A. M. Karlsson, Materials Science and Engineering A 392, 301 (2005).

    Article  Google Scholar 

  31. Y. S. Touloukian, R. K. Ki, R. E. Taylor and T. Y. R. Lee, Thermophysical Properties of Matter, Thermal Expansion of Nonmetallic Solids, vol. 13, (Plenum, New York, 1977), p. 176.

    Google Scholar 

  32. M. W. Chen, K. J. T. Livi, P. K. Wright and K. J. Hemker, Metallurgical and Materials Transactions A 34, 2289 (2003).

    Article  Google Scholar 

  33. R. E. Reed, Superalloys, Fundamentals and applications, Chapter 2, (Cambridge University Press, New York, 2006), p. 35.

    Book  Google Scholar 

Download references

Acknowledgments

The DECHEMA Forschung Institut (Germany) is gratefully acknowledged for the EPMA analyses. SR Technics Airfoil Services (Ireland) and Turbocoating (Italy) kindly provided, respectively, the low activity out-of-pack and the pack cemented coatings. This study was performed under the programme PARTICOAT FP7-NMP-2007-LARGE-1-CP-IP-211329-2 (2008–2012) funded by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pedraza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedraza, F., Mollard, M., Rannou, B. et al. Oxidation Resistance of Thermal Barrier Coatings Based on Hollow Alumina Particles. Oxid Met 85, 231–244 (2016). https://doi.org/10.1007/s11085-015-9570-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9570-3

Keywords

Navigation