Skip to main content
Log in

Oxidation Behavior and Mechanism of Inconel 740H Alloy for Advanced Ultra-supercritical Power Plants Between 1050 and 1170 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior and mechanism of as-cast Inconel 740H superalloy, newly developed for advanced ultra-supercritical power plants superheater and reheater pipes, were investigated in the temperature range of 1050–1170 °C in air. Isothermal oxidation testing, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy were used in this study. The results showed that the oxidation of Inconel 740H was a diffusion-controlled process and controlled by the outward diffusion of metallic elements and inward penetration of oxygen. Owing to the complicated chemical composition of the alloy, different oxides tended to form in the oxidation process. Cross-sectional characterization investigation indicated that the oxide-scale layer consisted of three parts when the temperature was high or the oxidation time was long: an internal oxidation zone composed of Al2O3 and TiO2, a continuous and dense middle layer of Cr2O3 containing precipitates of TiO2 and an outmost layer of NiCr2O4 spinel. In the formation process of NiCr2O4, NiO was found in the early transient stage. With further oxidation, TiO2 finally could not be detected in the internal oxidation zone as a result of outwards diffusion of Ti and its limited concentration in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Viswanathan, J. Henry, J. Tanzosh, G. Stanko, J. Shingledecker and B. Vitalis, Journal of Materials Engineering and Performance 14, 281 (2005).

    Article  Google Scholar 

  2. S. Q. Zhao, X. S. Xie, G. D. Smith and S. J. Patel, Materials and Design 27, 1120 (2006).

    Article  Google Scholar 

  3. C. F. Miller, G. W. Simmons and R. P. Wei, Scripta Materialia 42, 227 (2000).

    Article  Google Scholar 

  4. M. Bensch, J. Preußner, R. Hüttner, G. Obigodi, S. Virtanen and J. Gabel, Acta Materialia 58, 1607 (2010).

    Article  Google Scholar 

  5. W. Gao, Z. W. Li, W. Zheng, S. Li and Y. D. He, Intermetallics 10, 263 (2002).

    Article  Google Scholar 

  6. S. Sinharoy and S.L. Narasimhan, in Proceedings of the 10th International Symposium on Superalloys, 623 (2004).

  7. J. Xiao, N. Prud’homme, N. Li and V. Ji, Applied Surface Science 284, 446 (2013).

    Article  Google Scholar 

  8. J. Zhu, A. Wise, T. Nuhfer, G. R. Holcomb, P. D. Jablonski and S. Sridhar, Materials Science and Engineering: A 566, 134 (2013).

    Article  Google Scholar 

  9. Q. Jia and D. Gu, Optics and Laser Technology 62, 161 (2014).

    Article  Google Scholar 

  10. A. Vesel, A. Drenik, K. Elersic, M. Mozetic, J. Kovac and T. Gyergyek, Applied Surface Science 305, 674 (2014).

    Article  Google Scholar 

  11. F. J. Liu, M. C. Zhang, J. X. Dong and Y. W. Zhang, Acta Metallurgica Sinica (English Letters) 20, 102 (2007).

    Article  Google Scholar 

  12. L. Zheng, M. C. Zhang and J. X. Dong, Applied Surface Science 256, 7510 (2010).

    Article  Google Scholar 

  13. X.-M. Hou and K.-C. Chou, Journal of the European Ceramic Society 29, 517 (2009).

    Article  Google Scholar 

  14. F. Pérez-González and N. Garza-Montes-de, Oxidation of Metals 82, 145 (2014).

    Article  Google Scholar 

  15. X. X. Huang, J. S. Li, R. Hui, G. H. Bai and H. Z. Fu, Rare Metal Materials and Engineering 39, 1908 (2010).

    Article  Google Scholar 

  16. P. Berthod, S. Michon, J. Di Martino, S. Mathieu, S. Noël and R. Podor, Calphad 27, 279 (2003).

    Article  Google Scholar 

  17. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  18. D. R. Clarke, Current Opinion in Solid State and Materials Science 6, 237 (2002).

    Article  Google Scholar 

  19. D. Kim, C. Jang and W. Ryu, Oxidation of Metals 71, 271 (2009).

    Article  Google Scholar 

  20. C. V. Robino, Metallurgical and Materials Transactions B 27, 65 (1996).

    Article  Google Scholar 

  21. R. Haugsrud and T. Norby, Solid State Ionics 111, 323 (1998).

    Article  Google Scholar 

  22. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  Google Scholar 

  23. B. Albert, R. Völkl and U. Glatzel, Metallurgical and Materials Transactions A 45, 4561 (2014).

    Article  Google Scholar 

  24. A. Kumar, M. Nasrallah and D. L. Douglass, Oxidation of Metals 8, 227 (1974).

    Article  Google Scholar 

  25. S. Q. Zhao, X. S. Xie and G. D. Smith, Surface and Coatings Technology 185, 178 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from National Basic Research Program (863 Program) of China under Grant No. 2012AA03A501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Dong, J., Zhang, M. et al. Oxidation Behavior and Mechanism of Inconel 740H Alloy for Advanced Ultra-supercritical Power Plants Between 1050 and 1170 °C. Oxid Met 84, 61–72 (2015). https://doi.org/10.1007/s11085-015-9543-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9543-6

Keywords

Navigation