Skip to main content

Investigations for the Validation of the Defect Based Scale Failure Diagrams—Part II: Extension of the Concept and Application to Nickel Oxide, Titanium Oxide and Iron Oxide

Abstract

The chemical stability of oxide scales and the oxide growth kinetics are important factors to consider when choosing a material for high temperature application. Low oxide growth rates and good chemical stability are, however, not the only aspects to be taken into account. The mechanical stability of the oxide scale formed can also play a significant role, especially when external loads or fast heating or cooling rates come into play. In this work, experimental data on oxide scale failure and a defect based scale failure model are used to calculate mechanical stability diagrams for titanium oxide and iron oxide. For these diagrams the original η-c-approach is extended by a term characterizing the level of residual strains in the scale. In addition to titanium and iron oxide this extended approach is also applied to former measurement data on nickel oxide. With the stability diagrams developed it is possible to estimate the maximum tolerable strain for the oxide scale as a function of the physical defect situation in the scale. Metallographic inspection and 4-point bending tests are used to derive the mechanical stability parameter η and the parameter εr for the residual strain. Once these parameters are known, metallographic inspection alone is sufficient to estimate the remaining tolerable load or strain limit after a certain oxidation period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. M. Schütze, Protective Oxide Scales and Their Breakdown, (Wiley, Chichester, 1997).

    Google Scholar 

  2. H. Echsler, S. Ito and M. Schütze, Oxidation of Metals 60, 241 (2003).

    Article  Google Scholar 

  3. J. Armitt, D. R. Holmes, M. I. Manning, D. B. Meadowcroft and E. Metcalfe, The Spalling of Steam Grown Oxide from Superheater and Reheater Tube Steels, EPRI Report FP-686, (Electric Power Research Institute, Palo Alto, 1978).

    Google Scholar 

  4. J. Robertson and M. I. Manning, Materials Science and Technology 6, 81 (1990).

    Article  Google Scholar 

  5. H. E. Evans and R. C. Lobb, Corrosion Science 24, 209 (1984).

    Article  Google Scholar 

  6. H. E. Evans, G. P. Mitchell, R. C. Lobb and D. R. J. Owen, Proceedings of the Royal Society of London A 440, 1 (1993).

    Article  Google Scholar 

  7. A. M. Chaze and C. Coddet, Oxidation of Metals 27, 1 (1987).

    Article  Google Scholar 

  8. P. Hancock and J. R. Nicholls, Materials Science and Technology 4, 398 (1988).

    Article  Google Scholar 

  9. M. M. Nagl and W. T. Evans, Journal of Materials Science 28, 6247 (1993).

    Article  Google Scholar 

  10. M. M. Nagl, W. T. Evans and S. R. J. Saunders, Journal de Physique IV C9, 933 (1993).

    Google Scholar 

  11. P. L. Harrison, Corrosion Science 7, 789 (1967).

    Article  Google Scholar 

  12. M. Schütze, P. F. Tortorelli and I. G. Wright, Oxidation of Metals 73, 389 (2010).

    Article  Google Scholar 

  13. M. Schütze and M. Rudolphi, Materials Science Forum 696, 138 (2011).

    Article  Google Scholar 

  14. M. Rudolphi and M. Schütze, Oxidation of Metals 79, 167 (2013).

    Article  Google Scholar 

  15. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  Google Scholar 

  16. A. A. Griffith, Philosophical Transactions of the Royal Society of London A 221, 163 (1921).

    Article  Google Scholar 

  17. G. E. Dieter, Mechanical Metallurgy, (McGraw-Hill, Kogakusha, 1976).

    Google Scholar 

  18. G. R. Irwin, Fracture in Encyclopedia of Physics, vol. 5, (Springer, New York, 1958).

    Google Scholar 

  19. J. Li, S. Forberg and L. Hermansson, Biomaterials 12, 438 (1991).

    Article  Google Scholar 

  20. M. M. Nagl, S. R. J. Saunders, W. T. Evans and D. J. Hall, Corrosion Science 35, 965 (1993).

    Article  Google Scholar 

  21. J. Stringer, Acta Metallurgica 8, 758 (1960).

    Article  Google Scholar 

  22. A. Zeller, F. Dettenwanger and M. Schütze, Intermetallics 10, 59 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the German Research Foundation (DFG) under project no. SCHU 729/21-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario Rudolphi or Michael Schütze.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rudolphi, M., Schütze, M. Investigations for the Validation of the Defect Based Scale Failure Diagrams—Part II: Extension of the Concept and Application to Nickel Oxide, Titanium Oxide and Iron Oxide. Oxid Met 84, 45–60 (2015). https://doi.org/10.1007/s11085-015-9540-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9540-9

Keywords

  • Oxide scale failure diagram
  • 4-Point bend testing
  • Mechanical stability limits
  • Titanium oxide
  • Iron oxide
  • Nickel oxide