Skip to main content
Log in

Reaction–Diffusion–Stress Coupling Effect in Inelastic Oxide Scale During Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Stress is induced in a thermally grown oxide scale during high-temperature oxidation. Under certain conditions, the oxidation causes plastic deformation. An inhomogeneous growth strain formulation is proposed based on evolution equations. Using the inhomogeneous growth strain, a reaction–diffusion–stress coupling elastic–plastic model, which accounts for factors, such as the chemical reaction, kinetics of the oxide scale and diffusion of reactant species, is developed for the analysis of stress and effects of stress on these factors in the oxide scale during high-temperature oxidation. Numerical results reveal large compressive stresses and a significant stress gradient in the oxide scale with the largest compressive stress at the oxide/substrate interface and the lowest compressive stress at the oxygen/oxide interface, which is consistent with experimental observations. The stress developed in the oxide scale has an influence on the oxidation reaction rate and distribution of the reactant species concentration, which in return affects the stress distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U. Evans, Transactions of the Electrochemical Society 91, 547 (1947).

    Article  Google Scholar 

  2. J. Stringer, Corrosion Science 10, 513 (1970).

    Article  Google Scholar 

  3. V. Tolpygo and D. Clarke, Oxidation of Metals 49, 187 (1998).

    Article  Google Scholar 

  4. T. Ueno, Transactions of Japan Institute of Metals 15, 167 (1974).

    Article  Google Scholar 

  5. T. Mitchell, D. Voss and E. Butler, Journal of Materials Science 17, 1825 (1982).

    Article  Google Scholar 

  6. R. Bedworth and N. Pilling, Journal of the Institute of Metals 29, 529 (1923).

    Google Scholar 

  7. F. Rhines and J. Wolf, Metallurgical Transactions 1, 1701 (1970).

    Article  Google Scholar 

  8. V. Tolpygo, J. Dryden and D. Clarke, Acta Materialia 46, 927 (1998).

    Article  Google Scholar 

  9. D. R. Clarke, Acta Materialia 51, 1393 (2003).

    Article  Google Scholar 

  10. B. Panicaud, J. Grosseau-Poussard and J. Dinhut, Computational Materials Science 42, 286 (2008).

    Article  Google Scholar 

  11. S. Maharjan, X. Zhang and Z. Wang, Oxidation of Metals 77, 93 (2012).

    Article  Google Scholar 

  12. R. Krishnamurthy and D. J. Srolovitz, Acta Materialia 51, 2171 (2003).

    Article  Google Scholar 

  13. H. Zhou, J. Qu and M. Cherkaoui, Mechanics of Materials 42, 63 (2010).

    Article  Google Scholar 

  14. K. Loeffel, L. Anand and Z. M. Gasem, Acta Materialia 61, 399 (2013).

    Article  Google Scholar 

  15. F. Yang, Materials Science and Engineering A 409, 153 (2005).

    Article  Google Scholar 

  16. X. L. Dong, X. F. Fang, X. Feng and K. C. Hwang, Journal of the American Ceramic Society 96, 44 (2013).

    Article  Google Scholar 

  17. Y. Suo and S. Shen, Journal of Applied Physics 114, 164905 (2013).

    Article  Google Scholar 

  18. S. Hu and S. Shen, Acta Mechanica 224, 2895 (2013).

    Article  Google Scholar 

  19. D. Zhu, J. H. Stout and D. A. Shores, in High Temperature Corrosion and Protection of Materials 4, Pts 1 and 2, (Transtec Publications Ltd, Zurich-Uetikon, 1997), p. 333.

    Google Scholar 

  20. D. H. Bradhurs and P. M. Heuer, Journal of Nuclear Materials 37, 35 (1970).

    Article  Google Scholar 

  21. E. Kobeda and E. A. Irene, Journal of Vacuum Science & Technology B 6, 574 (1988).

    Article  Google Scholar 

  22. B. Cox, Journal of Nuclear Materials 336, 331 (2005).

    Article  Google Scholar 

  23. A. Atkinson, Reviews of Modern Physics 57, 437 (1985).

    Article  Google Scholar 

  24. J. Li, Scripta Metallurgica 15, 21 (1981).

    Article  Google Scholar 

  25. N. Swaminathan and J. Qu, Modelling and Simulation in Materials Science and Engineering 17, 16 (2009).

    Article  Google Scholar 

  26. N. Swaminathan, J. Qu and Y. Sun, Philosophical Magazine 87, 1705 (2007).

    Article  Google Scholar 

  27. F. Larche and J. Cahn, Journal of Research of the National Bureau of Standards 89, 467 (1984).

    Article  Google Scholar 

  28. E. A. García and J. Kovacs, Journal of Nuclear Materials 210, 78 (1994).

    Article  Google Scholar 

  29. J. Favergeon, T. Montesin and G. Bertrand, Oxidation of Metals 64, 253 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

The supports from NSFC (Grants Nos. 11025209, 11372238, 11302161, 11321062 and 11302162) are appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Suo, Y. & Shen, S. Reaction–Diffusion–Stress Coupling Effect in Inelastic Oxide Scale During Oxidation. Oxid Met 83, 507–519 (2015). https://doi.org/10.1007/s11085-015-9531-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9531-x

Keywords

Navigation