Skip to main content
Log in

Boron Depletion in a Nickel Base Superalloy Induced by High Temperature Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The conventionally cast Ni-base superalloy Rene 80 containing 90 wt ppm boron was oxidized in synthetic air at 850–1,050 °C for times up to 100 h. Extensive microstructural studies using GD-OES and SEM/WDX/EBSD revealed formation of a porous chromia scale containing TiO2 precipitates at its outer surface and semi-continuous layers of BCrO3 and CrTi2O5 at its base. The development of B-rich oxide in the scale is related to its high thermodynamic stability and the high alloy boron diffusivity. Its enrichment in the oxide scale resulted in B-depletion from the alloy matrix, which was extremely rapid at 1,050 °C, draining the boron content of a 2 mm thick alloy coupon in 100 h. After 100 h exposure at 950 °C, the B-content dropped below 40 wt ppm, but only minor depletion was found after 100 h at 850 °C. Predictions of B-depletion based on calculation of its diffusion from a thin, flat sheet were in good agreement with experiment at 1,050 °C. Precipitation of B-containing compounds (borides) within the alloy is shown to account qualitatively for slower B-outdiffusion at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Tytko, P. Choi, J. Klöwer, A. Kostka, G. Inden and D. Raabe, Acta Materialia 60, 1731 (2012).

    Article  Google Scholar 

  2. D. Blavette, P. Duval, L. Letellier and M. Guttmann, Acta Materialia 44, 4995 (1996).

    Article  Google Scholar 

  3. M. Donachie and S. Donachie, Superalloys A Technical Guide, (ASM International, Materials Park, 2002), p. 37, 235–238.

  4. R. Reed, The Superalloys Fundamentals and Applications, (Cambridge University Press, New York, 2006), p. 54, 127, 252–254.

  5. F. Abe, T. Horiuchi, M. Taneike and K. Sawada, Materials Science and Engineering A 378, 299 (2004).

    Article  Google Scholar 

  6. M. Donachie and S. Donachie, Superalloys A Technical Guide, (ASM International, Materials Park, 2002), p. 211.

    Google Scholar 

  7. C. A. Barrett, R. Miner and D. Hull, Oxidation of Metals 20, 255 (1983).

    Article  Google Scholar 

  8. A. Khanna, W. Quadakkers, P. Kofstad, and C. Wasserfuhr, The Effect of Trace Impurities of S, P and B on the High Temp. Oxidation of NiCrAl Based Alloys, in 9th EUROCORR, 26 Oct, Proc., II, EG-007, Utrecht, NL, (1989).

  9. O. Knacke, O. Kubaschewski and K. Hesselmann, Thermochemical Properties of Inorganic Substances, vol. 2, (Springer, Berlin, 1991).

    Google Scholar 

  10. L. Karlsson and H. Norden, Le Journal de Physique Colloques 47, C7 (1986).

    Google Scholar 

  11. E. Crombie, Method of Selective Grain Growth in Nickel Base Superalloy by Controlled Boron Diffusion. USA Patent 4,401,480 (1983).

  12. Ibid, Heat Treating of Heat Resisting Alloys, ASM Committee on Heat Resisting Alloy, 257–268.

  13. Y. Chu, P. Ji and J. Ke, Acta Metallurgica Sinica 27, 303 (1991).

    Google Scholar 

  14. J. Berlin, Imaging and Microscopy 13, 19 (2011).

    Google Scholar 

  15. W. J. Quadakkers, A. Elschner, W. Speier and H. Nickel, Applied Surface Science 52, 271 (1991).

    Article  Google Scholar 

  16. A. Jalowicka, Effect of Strengthening Additions on the Oxidation and Sulphidation Resistance of Cast Ni-Base Superalloys, PhD thesis, RWTH Aachen University, Aachen (Germany) (2013).

  17. H. Schmidt, Acta Crystallographica 17, 1080 (1964).

    Article  Google Scholar 

  18. H. Müller-Buschbaum and K. Bluhm, Zeitschrift für anorganische und allgemeine Chemie 558, 28 (1988).

    Article  Google Scholar 

  19. A. Jalowicka, W. Nowak, D. Naumenko, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 65, 178 (2014).

    Article  Google Scholar 

  20. A. Naoumidis, H. Schulze, W. Jungen and P. Lersch, Journal of the European Ceramic Society 7, 55 (1991).

    Article  Google Scholar 

  21. C. Garcia-Rosales, H. Schulze, A. Naoumidis and H. Nickel, Journal of the American Ceramic Society 76, 2869 (1993).

    Article  Google Scholar 

  22. W. J. Quadakkers, Materials Science and Engineering 87, 107 (1987).

    Article  Google Scholar 

  23. E. Essuman, G. Meier, J. Zurek, M. Hansel, L. Singheiser, T. Norby and W. J. Quadakkers, Journal of Materials Science 43, 5591 (2008).

    Article  Google Scholar 

  24. M. Michalik, S. Tobing, M. Hänsel, V. Shemet, W. J. Quadakkers and D. J. Young, Materials and Corrosion 65, 260 (2014).

    Article  Google Scholar 

  25. X. Zheng and D. Young, Oxidation of Metals 42, 163 (1994).

    Article  Google Scholar 

  26. R. Perkins, Alloying of Chromium to resist Nitridation, Nasa Report, Nasa-Cr-72892 (1971).

  27. J. W. Park and C. J. Altstetter, Metallurgical Transactions A 18, 43 (1987).

    Article  Google Scholar 

  28. D. Whittle, Corrosion Science 12, 869 (1972).

    Article  Google Scholar 

  29. C. Wagner, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 63, 772 (1959).

    Google Scholar 

  30. R. A. Rapp, Corrosion 21, 382 (1965).

    Article  Google Scholar 

  31. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  Google Scholar 

  32. R. Rapp, Acta Metallurgica 9, 730 (1961).

    Article  Google Scholar 

  33. St. Frank, U. Södervall and Chr. Herzig, Intermetallics 5, 221 (1997).

    Article  Google Scholar 

  34. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, (Clarendon Press, Oxford, 1959).

    Google Scholar 

  35. M. Hasaka, T. Morimura, Y. Uchiyama, S. Kondo, T. Watanabe, K. Hisatsune and T. Furuse, Scripta Metallurgica et Materiallia 29, 959 (1993).

    Article  Google Scholar 

  36. J. Ramirez and S. Liu, Welding Research Supplement, 365–375 (1992).

  37. D. Liping, Y. Fengzhi and G. Yugin, Hanjie Xuebao 3, 84 (1982).

    Google Scholar 

  38. R. M. Kruger and G. S. Gas, Metallurgical Transactions A 19A, 2555 (1988).

    Article  Google Scholar 

  39. R. Darolia, D.F. Lahram, R.D. Field, Formation of Topologically Closed Packed Phases in Nickel Base Single Crystal Syuperalloys, in Superalloys 1988: proceedings of the Sixth International Symposium on Superalloys, The Metallurgical Society of AIME, September 1822, Seven Springs Mountain Resort, Champion, Pennsylvania, pp. 255–263 (1988).

Download references

Acknowledgments

The authors would like to acknowledge the Deutsche Forschungsgemeinshaft (DFG) for funding part of this work under Grant No. NA 615 2-1. Assistance with ICP-OES analysis provided by H. Lippert from the Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH is greatly appreciated. The authors are grateful to the following colleagues in the Institute of Energy and Climate Research of the Forschungszentrum Jülich GmbH for assistance in the experimental work: R. Mahnke and M. Borzikov for the oxidation experiments, V. Gutzeit and J. Bartsch for metallographic studies, M. Ziegner for XRD analyses and Dr. E. Wessel and Dr. D. Grüner for SEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jalowicka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalowicka, A., Nowak, W., Young, D.J. et al. Boron Depletion in a Nickel Base Superalloy Induced by High Temperature Oxidation. Oxid Met 83, 393–413 (2015). https://doi.org/10.1007/s11085-015-9529-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9529-4

Keywords

Navigation