Skip to main content
Log in

Vanadium-Containing Oil Ash Corrosion of Boilers Under Oxidizing and Syngas Atmospheres

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Corrosion in oil-fired boilers is accelerated in the presence of vanadium, sodium, and sulfur from low grade fuels. Several iron-based alloys and a nickel-based alloy were studied in order to verify the effect of different Cr and Al contents under conditions typical for the partial oxidation process. Materials performance was analyzed by means of substrate recession rate and metallographic characterization. Samples were exposed to H2S-containing syngas atmosphere in order to simulate boiler operating conditions without ash deposition. The prevailing corrosion mechanism under this reducing atmosphere was sulfidation. In order to simulate boiler conditions with oil ash deposits, samples were immersed in 60 mol% V2O5–40 Na2SO4 salt in the same syngas atmosphere. The prevailing corrosion mechanism in this case was sulfidation under a reducing atmosphere and dissolution of iron or chromium from the substrate. The nickel-based substrate showed the best performance under these experimental conditions. In order to simulate air inlet due to shutdowns, samples were immersed in the same salt during exposure in air. The prevailing corrosion mechanism was still sulfidation in the oxidizing atmosphere accelerated by the presence of vanadate salt. This corrosion mechanism is characterized by the formation of a sulfide/oxide layer adjacent to the metal, the dissolution of oxides in the molten deposit, and their precipitation near the outer surface of the deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. D. Paul and R. R. Seeley, Corrossion 47, 152 (1991).

    Article  Google Scholar 

  2. N. Otsuka, Shreir’s Corrosion, 1, 457 (2010).

  3. R. L. Jones and C. E. Williams, Materials Science and Engineering 87, 353 (1987).

    Article  Google Scholar 

  4. M. Seiersten, H.-J. Rätzer-Scheibe and P. Kofstad, Materials and Corrosion 38, 532 (1987).

    Article  Google Scholar 

  5. R. C. Kerby and J. R. Wilson, Canadian Journal of Chemistry 51, 1032 (1973).

    Article  Google Scholar 

  6. N. Otsuka and R. A. Rapp, Journal of the Electrochemical Society 137, 1990 (53–60).

    Article  Google Scholar 

  7. E. Otero, A. Pardo, J. Hernaez and F. J. Perez, Corrosion Science 32, 677 (1991).

    Article  Google Scholar 

  8. N.S. Bornstein. Literature Review of Inhibition for Vanadate Attack. 23-8-1988. East Hartford, Connecticut 06108, USA, United Technologies Research Center.

  9. N. S. Bornstein, Vanadium corrosion studies (1993).

  10. R. L. Jones, Vanadate-sulfate melt thermochemistry relating to hot corrosion of thermal barrier coatings. NRL/MR/6170–97-8103 (1997).

  11. M. A. Espinosa-Medina, G. Carbajal-De la Torre, H. B. Liu, A. Martinez-Villafane and J. G. Gonzalez-Rodriguez, Corrosion Science 51, 1420 (2009).

    Article  Google Scholar 

  12. M. Amaya, M. A. Espinosa-Medina, J. Porcayo-Calderon, L. Martinez and J. G. Gonzalez-Rodriguez, Materials Science and Engineering: A 349, 12 (2003).

    Article  Google Scholar 

  13. H. Singh, D. Puri and S. Prakash, Reviews on Advanced Materials Science 16, 27 (2007).

    Google Scholar 

  14. N. Arivazhagan, S. Narayanan, S. Singh, S. Prakash and G. M. Reddy, Materials and Design 34, 459 (2012).

    Article  Google Scholar 

  15. E. Rost, Acta Chemica Scandinavica 39, 405 (1985).

    Article  Google Scholar 

  16. A. A. Fotiev, L. F. Mal’tseva, and L. L. Surat, Neorganicheskie Materialy 14, 2223 (1978).

  17. L. L. Surat and A. A. Fotiev, Zhurnal Neorganischeskoin Khimii 23, 2273 (1978).

    Google Scholar 

  18. M. Seiersten and P. Kofstad, Materials Science & Technology 3, 576 (1987).

    Google Scholar 

  19. G. W. Cunningham and A. Brasunas, Corrossion 12, 389 (1956).

    Google Scholar 

  20. P. Hancock, Corros Sci 22, 51 (1982).

    Article  Google Scholar 

  21. P. Hancock, Materials Science & Technology 3, 536 (1987).

    Google Scholar 

  22. S. Hwang and R. A. Rapp, Corrossion 45, 933 (1989).

    Article  Google Scholar 

  23. A. Wong-Moreno, Y. Mujica-Martinez, High temperature corrosion enhanced by residual fuel oil ash deposits, Proceedings of the NACE InternationalAnnualConference and Corrosion Show (Corrosion’95), NACE International, Houston, USA, 1995, (1994) p. 185.

  24. G. N. Bala, H. Singh, and S. Prakash, Materials and Corrosion, (2014). doi:10.1002/maco.201307534.

  25. J. G. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafane, V. M. Salinas-Bravo and J. Porcayo-Calderon, Materials Science and Engineering: A 435–436, 258 (2006).

    Article  Google Scholar 

  26. M. Fichera, R. Leonardi and C. A. Farina, Electrochimica Acta 32, 955 (1987).

    Article  Google Scholar 

  27. R. A. Rapp, Corrossion 42, 568 (1986).

    Article  Google Scholar 

  28. N. Otsuka, Corrosion Science 44, 265 (2002).

    Article  Google Scholar 

  29. K. L. Luthra and H. S. Spacil, Journal of the Electrochemical Society 129, 649 (1982).

    Article  Google Scholar 

  30. D. A. Pantony and K. I. Vasu, Journal of Inorganic and Nuclear Chemistry 30, 433 (1968).

    Article  Google Scholar 

  31. D. A. Pantony and K. I. Vasu, Journal of Inorganic and Nuclear Chemistry 30, 755 (1968).

    Article  Google Scholar 

  32. J.R. Nicholls and P. Hancock, The analysis of oxidation and hot corrosion data-a statistical approach, High Temperature Corosion, NACE-6, Conference held at San Diego, California, March 26, 1981, (1981), p. 198.

  33. J. R. Nicholls, N. J. Simms and A. Encinas-Oropesa, Materials at High Temperatures 24, 149 (2007).

    Article  Google Scholar 

  34. J. Sumner, A. Encinas-Oropesa, N. J. Simms, and J. R. Nicholls, Type II Hot Corrosion: Kinetics Studies of CMSX-4, 8th International Symposium on High-Temperature Corrosion and Protection of Materials, (2012).

  35. Corrosion of metals and alloys—Method for metallographic examination of samples after exposure to high temperature corrosive environments. ISO 26146. 2012. ISO TC156 WG 13 (High Temperature Corrosion).

  36. N. J. Simms, A. Encinas-Oropesa and J. R. Nicholls, Materials and Corrosion 59, 476 (2008).

    Article  Google Scholar 

  37. J. F. Norton, T. P. Levi, and W. T. Bakker, The Corrosion Behavior of Several Fe and Ni-Base Alloys Exposed to a Reducing-Sulphidizing Atmosphere at 600 °C, 1995, p. 111.

  38. K. N. Strafford, W. Y. Chan, and J. F. Norton, The Influence of Sulphur Partial Pressure on the Corrosion of Some High Temperature Alloys in H2/H2S Atmospheres, 1983, p. 517.

  39. K. N. Strafford and P. K. Datta, Materials Science and Technology 5, 765 (1989).

    Article  Google Scholar 

  40. A. Rahmel, M. Schorr, A. Velasco-Tellez and A. Pelton, Oxidation of Metals 27, 199 (1987).

    Article  Google Scholar 

  41. M. Schulte, A. Rahmel and M. Schütze, Oxidation of Metals 49, 33 (1998).

    Article  Google Scholar 

  42. D. J. Young, Reviews on High Temperature Materials 4, 299 (1980).

    Google Scholar 

  43. J. Stringer, Journal of Materials Science and Technology 3, 482 (1987).

    Google Scholar 

  44. F. S. Pettit and C. S. Giggins, Hot Corrosion. in Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, eds. C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987), pp. 327–358.

    Google Scholar 

  45. Y. S. Zhang and R. A. Rapp, Journal of the Electrochemical Society 132, 2498 (1985).

    Article  Google Scholar 

  46. Y. S. Zhang, Journal of the Electrochemical Society 133, 655 (1986).

    Article  Google Scholar 

  47. N. Otsuka and R. A. Rapp, Journal of the Electrochemical Society 137, 46 (1990).

    Article  Google Scholar 

  48. J. A. Goebel and F. S. Pettit, Metallurgical Transactions 1, 1943 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Montero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero, X., Galetz, M.C. Vanadium-Containing Oil Ash Corrosion of Boilers Under Oxidizing and Syngas Atmospheres. Oxid Met 83, 485–506 (2015). https://doi.org/10.1007/s11085-015-9527-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9527-6

Keywords

Navigation