Oxidation of Metals

, Volume 82, Issue 5–6, pp 457–467 | Cite as

Interfacial Solute Segregation in the Thermally Grown Oxide of Thermal Barrier Coating Structures

  • Yimeng Chen
  • Roger C. Reed
  • Emmanuelle A. Marquis
Original Paper

Abstract

Atom probe tomography is used to measure interfacial and grain boundary segregation in the thermally grown oxide layers found on thermal barrier coatings formed by isothermal heat treatments at 1,100 °C. Segregation of Zr, Hf, Y, and minor elements at the metal/oxide interfaces, oxide grain boundaries and oxide dislocations are observed, quantified and rationalised. The implications of the findings are discussed.

Keywords

Thermal barrier coating Segregation Atom probe tomography Grain boundary Dislocations 

Notes

Acknowledgments

This work was partly supported by The University of Michigan College of Engineering.

References

  1. 1.
    D. V. Rigney, et al., PVD thermal barrier coating applications and process development for aircraft engines. J Thermal Spray Technol 6, (2), 167–175 (1997).CrossRefGoogle Scholar
  2. 2.
    R. C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, Cambridge, (2006).CrossRefGoogle Scholar
  3. 3.
    R. A. Miller, Current status of thermal barrier coatings—an overview. Surf Coat Technol 30, (1), 1–11 (1987).CrossRefGoogle Scholar
  4. 4.
    N. P. Padture, M. Gell and E. H. Ordan, Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002).CrossRefGoogle Scholar
  5. 5.
    M. Stiger, et al., Thermal barrier coatings for the 21st century. Zeitschrift fur Metallkunde 90, (12), 1069–1078 (1999).Google Scholar
  6. 6.
    A. Rabiei and A. Evans, Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater 48, (15), 3963–3976 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Gell, et al., Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings. Metall Mater Trans A 30, (2), 427–435 (1999).CrossRefGoogle Scholar
  8. 8.
    B. Pint, et al., Substrate and bond coat compositions: factors affecting alumina scale adhesion. Mater Sci Eng A 245, (2), 201–211 (1998).CrossRefGoogle Scholar
  9. 9.
    R. T. Wu, et al., The retention of thermal barrier coating systems on single-crystal superalloys: effects of substrate composition. Acta Mater 56, (14), 3622–3629 (2008).CrossRefGoogle Scholar
  10. 10.
    J. L. Smialek, Effect of sulfur removal on Al2O3 scale adhesion. Metall Trans A 22, (3), 739–752 (1991).CrossRefGoogle Scholar
  11. 11.
    A. G. Evans, et al., Mechanisms controlling the durability of thermal barrier coatings. Progress Mater Sci 46, (5), 505–553 (2001).CrossRefGoogle Scholar
  12. 12.
    D. Whittle and J. Stringer, Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos Trans R Soc London Ser A 295, (1413), 309–329 (1980).CrossRefGoogle Scholar
  13. 13.
    A. H. Heuer, et al., Alumina scale formation: a New Perspective. J Am Ceram Soc 94, S146–S153 (2011).CrossRefGoogle Scholar
  14. 14.
    B. Pint and K. More, Characterization of alumina interfaces in TBC systems. J Mater Sci 44, (7), 1676–1686 (2009).CrossRefGoogle Scholar
  15. 15.
    K. A. Unocic, C. M. Parish and B. A. Pint, Characterization of the alumina scale formed on coated and uncoated doped superalloys. Surf Coat Technol 206, (7), 1522–1528 (2011).CrossRefGoogle Scholar
  16. 16.
    Y. Chen, R. C. Reed and E. A. Marquis, As-coated thermal barrier coating: structure and chemistry. Scr Mater 67, (9), 779–782 (2012).CrossRefGoogle Scholar
  17. 17.
    L. A. Giannuzzi and F. A. Stevie, A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, (3), 197–204 (1999).CrossRefGoogle Scholar
  18. 18.
    K. Thompson, et al., In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, (2–3), 131–139 (2007).CrossRefGoogle Scholar
  19. 19.
    K. S. Murphy, K. L. More and M. J. Lance, As-deposited mixed zone in thermally grown oxide beneath a thermal barrier coating. Surf Coat Technol 146–147, 152–161 (2001).CrossRefGoogle Scholar
  20. 20.
    E. A. Marquis, et al., Probing the improbable: imaging C atoms in alumina. Mater Today 13, (10), 34–36 (2010).CrossRefGoogle Scholar
  21. 21.
    O. C. Hellman, et al., Application software for data analysis for three-dimensional atom probe microscopy. Mater Sci Eng A 327, 29–33 (2002).CrossRefGoogle Scholar
  22. 22.
    J. Cho, et al., Role of segregating dopants on the improved creep resistance of aluminum oxide. Acta Mater 47, (5), 4197–4207 (1999).CrossRefGoogle Scholar
  23. 23.
    B. Veal and A. Paulikas, Growth strains and creep in thermally grown alumina: oxide growth mechanisms. J Appl Phys 104, (9), 093525 (2008).CrossRefGoogle Scholar
  24. 24.
    B. A. Pint, Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met 45, (1–2), 1–37 (1996).CrossRefGoogle Scholar
  25. 25.
    S. Lartigue-Korinek, et al., HAADF study of the relationship between intergranular defect structure and yttrium segregation in an alumina grain boundary. Acta Mater 59, (9), 3519–3527 (2011).CrossRefGoogle Scholar
  26. 26.
    I. Milas, B. Hinnemann and E. A. Carter, Structure of and ion segregation to an alumina grain boundary: implications for growth and creep. J Mater Res 23, (5), 1494–1508 (2008).CrossRefGoogle Scholar
  27. 27.
    M. Sillassen, et al., Effects of dopant concentration and impurities on the conductivity of magnetron-sputtered nanocrystalline yttria-stabilized zirconia. Solid State Ionics 181, (19), 864–867 (2010).CrossRefGoogle Scholar
  28. 28.
    M. J. Stiger, et al., Development of intermixed zones of alumina/Zirconia in thermal barrier coating systems. Metall Mater Trans A 38A, (4), 848–857 (2007).CrossRefGoogle Scholar
  29. 29.
    M. Chi and H. Gu, Comparison of segregation behaviors for special and general boundaries in polycrystalline Al2O3 with SiO2–TiO2 impurities. Interface Sci 12, (2–3), 335–342 (2004).CrossRefGoogle Scholar
  30. 30.
    D. Bouchet, F. Dupau and S. Lartigue-Korinek, Structure and chemistry of grain boundaries in yttria doped aluminas. Microsc Microanal Microstruct 4, (6), 561–573 (1993).CrossRefGoogle Scholar
  31. 31.
    M. Gülgün, et al., Cation segregation in an oxide ceramic with low solubility: yttrium doped α-alumina. Interface Sci 10, (1), 99–110 (2002).CrossRefGoogle Scholar
  32. 32.
    A. Heuer, N. J. Tighe and R. Cannon, Plastic deformation of fine-grained alumina (Al2O3): II, basal slip and nonaccommodated grain-boundary sliding. J Am Ceram Soc 63, (1–2), 53–58 (1980).CrossRefGoogle Scholar
  33. 33.
    A. Heuer, et al., On the growth of Al2O3 scales. Acta Mater 61, (18), 6670–6683 (2013).CrossRefGoogle Scholar
  34. 34.
    R. T. Wu and R. C. Reed, On the compatibility of single crystal superalloys with a thermal barrier coating system. Acta Mater 56, (3), 313–323 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yimeng Chen
    • 1
  • Roger C. Reed
    • 2
  • Emmanuelle A. Marquis
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations