Oxidation of Metals

, Volume 82, Issue 5–6, pp 415–436 | Cite as

Water Vapour Effect on the Oxidation Mechanism of a Cobalt-Based Alloy at High Temperatures (800–1,100 °C)

  • H. Buscail
  • R. Rolland
  • C. Issartel
  • S. Perrier
  • F. Riffard
Original Paper


A cobalt-based Phynox alloy was oxidized in the 800–1,100 °C temperature range. The alloy oxidation was consistent with a growth mechanism limited by the diffusion process in a growing Cr2O3 oxide scale. Water vapour enhanced the alloy oxidation rate and scale porosity. Thermal cycling tests at 900 and 1,000 °C showed that water vapour reduces the outer Mn1.5Cr1.5O4 subscale adherence, but the chromia scale adherence was not affected. These temperatures permited a rapid chromium supply from the substrate to form a continuous chromia scale. At 1,100 °C thermal cycling conditions led to scale spallation and chromium depletion in the alloy. In dry air, weight losses were recorded due to cobalt and molybdenum oxidation, giving CoCr2O4 and CoMoO4. In wet air, the initial porous chromia scale permited nickel and cobalt oxidation, leading to Ni5Co3O8 and CoCr2O4 formation and resulting in bad adherence during thermal cycling.


Cobalt-based alloy Water vapor Thermal cycling 


  1. 1.
    P. Berthod, S. Michon, L. Aranda, S. Mathieu and J. C. Gachon, Computer Coupling of Phase Diagrams and Thermochemistry 27, 353 (2003).CrossRefGoogle Scholar
  2. 2.
    P. Berthod, S. Michon, J. Di Martino, S. Mathieu, S. Noël, R. Podor and C. Rapin, Computer Coupling of Phase Diagrams and Thermochemistry 27, 279 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Di Martino, C. Rapin, P. Berthod, R. Podor and P. Steinmetz, Corrosion Science 46, 1865 (2004).CrossRefGoogle Scholar
  4. 4.
    P. Berthod, P. Lemoine and L. Aranda, Materials Science Forum 595–598, 871 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Singh, Gitanjaly, S. Singh and S. Prakash, Applied Surface Science 255, 7062 (2009).Google Scholar
  6. 6.
    D. J. Baxter, D. Gilliland, F. Lanza, G. P. Toledo and F. Bregani, Materials Science Forum 251–254, 801 (1997).CrossRefGoogle Scholar
  7. 7.
    C. Navas, M. Cadenas, J. M. Cuetos and J. de Damborenea, Wear 260, 838 (2006).CrossRefGoogle Scholar
  8. 8.
    M. J. Tobar, J. M. Amado, C. Alvarez, A. Garcia, A. Varela and A. Yanez, Surface and Coating Technology 202, 2297 (2008).CrossRefGoogle Scholar
  9. 9.
    T. Sahraoui, N. E. Fenineche, G. Montavon and C. Coddet, Journal of Materials Processing Technology 152, 43 (2004).CrossRefGoogle Scholar
  10. 10.
    T. Sahraoui, H. I. Feraoun, N. Fenineche, G. Montavon, H. Aourag and C. Coddet, Materials Letters 58, 2433 (2004).CrossRefGoogle Scholar
  11. 11.
    A. Halstead and R. D. Rawlings, Journal of Materials Science 20, 1693 (1985).CrossRefGoogle Scholar
  12. 12.
    Y.-D. Zhang, Z.-G. Yang, C. Zhang and H. Lan, Oxidation of Metals 70, 229 (2008).CrossRefGoogle Scholar
  13. 13.
    P. J. Blau, T. M. Brummett, B. A. Pint and S. J. Shaffer, Wear 267, 380 (2009).CrossRefGoogle Scholar
  14. 14.
    G. Michel, P. Berthod, M. Vilasi, S. Mathieu and P. Steinmetz, Surface and Coating Technology 205, 5241 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. Briol, Materials Science and Engineering A 528, 1117 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Fontana, S. Chevalier and G. Caboche, Journal of Power Sources 193, 136 (2009).CrossRefGoogle Scholar
  17. 17.
    L. Antoni, Materials Science Forum 461–464, 1073 (2004).CrossRefGoogle Scholar
  18. 18.
    A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).CrossRefGoogle Scholar
  19. 19.
    H. Buscail, S. Heinze, P. Dufour and J. P. Larpin, Oxidation of Metals 47, 445 (1997).CrossRefGoogle Scholar
  20. 20.
    E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, L. Singheiser and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).CrossRefGoogle Scholar
  21. 21.
    E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, T. Norby, L. Singheiser and W. J. Quadakkers, Corrosion Science 50, 1753 (2008).CrossRefGoogle Scholar
  22. 22.
    D. L. Douglass, P. Kofstad, A. Rahmel and G. C. Wood, Oxidation of Metals 45, 529 (1996).CrossRefGoogle Scholar
  23. 23.
    A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Antoni, Materials at High Temperatures 22, 105 (2005).CrossRefGoogle Scholar
  24. 24.
    G. R. Holcomb and D. E. Alman, Scripta Materialia 54, 1821 (2006).CrossRefGoogle Scholar
  25. 25.
    Y. Wouters, G. Bamba, A. Galerie, M. Mermoux and J. P. Petit, Materials Science Forum 461–464, 839 (2004).CrossRefGoogle Scholar
  26. 26.
    H. Asteman, J. E. Svensson and L. G. Johansson, Oxidation of Metals 57, 193 (2002).CrossRefGoogle Scholar
  27. 27.
    Shen Jianian, Zhou Longjiang and Li Tiefan, Oxidation of Metals 48, 347 (1997).CrossRefGoogle Scholar
  28. 28.
    M. Schütze, D. Renusch and M. Schorr, Materials at High Temperatures 22, 113 (2005).CrossRefGoogle Scholar
  29. 29.
    X. Peng, J. Yan, Y. Zhou and F. Wang, Acta Materialia 53, 5079 (2005).CrossRefGoogle Scholar
  30. 30.
    E. J. Opila, Materials Science Forum 461–464, 765 (2004).CrossRefGoogle Scholar
  31. 31.
    D. J. Young, Materials Science Forum 595–598, 1189 (2008).CrossRefGoogle Scholar
  32. 32.
    Y. P. Jacob, V. A. C. Haanappel, M. F. Stroosnijder, H. Buscail, P. Fielitz and G. Borchardt, Corrosion Science 44, 2027 (2002).CrossRefGoogle Scholar
  33. 33.
    N. K. Othman, N. Othman, J. Zhang and D. J. Young, Corrosion. Science 51, 3039 (2009).CrossRefGoogle Scholar
  34. 34.
    R. Rolland, C. Issartel, S. Perrier and H. Buscail, Corrosion Engineering. Science and Technology 46, 634 (2011).Google Scholar
  35. 35.
    H. Buscail, F. Riffard, C. Issartel and S. Perrier, Corrosion Engineering. Science and Technology 47, 404 (2012).Google Scholar
  36. 36.
    W. C. Hagel and A. U. Seybolt, Journal of the Electrochemical Society 108, 1146 (1961).CrossRefGoogle Scholar
  37. 37.
    J. H. Chen, P. M. Rogers and J. A. Little, Oxidation of Metals 47, 381 (1997).CrossRefGoogle Scholar
  38. 38.
    H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff, E. Caudron and C. Issartel, Materials Chemistry and Physics 111, 491 (2008).CrossRefGoogle Scholar
  39. 39.
    H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff and C. Issartel, Journal of Materials Science 43, 6960 (2008).CrossRefGoogle Scholar
  40. 40.
    V. P. Deodeshmukh, Oxidation of Metals 79, 567 (2013).CrossRefGoogle Scholar
  41. 41.
    D. Schmidt, M. Galetz and M. Schütze, Oxidation of Metals 79, 589 (2013).CrossRefGoogle Scholar
  42. 42.
    A. Galerie, Y. Wouters and M. Caillet, Materials Science Forum 369–370, 231 (2001).CrossRefGoogle Scholar
  43. 43.
    T. Norby, Advances in Ceramics 23, 107 (1987).Google Scholar
  44. 44.
    Cheng Shen-Yuan, Kuan Sheng-Lih and Tsai Wen-Ta, Corrosion Science 48, 634 (2006).CrossRefGoogle Scholar
  45. 45.
    C. Issartel, H. Buscail, Y. Wang, R. Rolland, M. Vilasi and L. Aranda, Oxidation of Metals 76, 127 (2011).CrossRefGoogle Scholar
  46. 46.
    T. Norby, Journal de Physique IV 3, 99 (1993).CrossRefGoogle Scholar
  47. 47.
    M. R. Ardigo, I. Popa, S. Chevalier, S. Weber, O. Heintz and M. Vilasi, Oxidation of Metals 79, 495 (2013).CrossRefGoogle Scholar
  48. 48.
    N. K. Othman, J. Zhang and D. J. Young, Corrosion Science 52, 2827 (2010).CrossRefGoogle Scholar
  49. 49.
    P. Kofstad, High temperature corrosion (Chap. 10), (Elsevier Applied Science Publishers Ltd., London, 1988), p. 373.Google Scholar
  50. 50.
    C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).CrossRefGoogle Scholar
  51. 51.
    G. Ben Abderrazik, G. Moulin and A.M. Huntz, Oxidation of Metals 33, 191 (1990).Google Scholar
  52. 52.
    H. M. Tawancy, Oxidation of Metals 45, 323 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • H. Buscail
    • 1
  • R. Rolland
    • 1
  • C. Issartel
    • 1
  • S. Perrier
    • 1
  • F. Riffard
    • 1
  1. 1.LVEEM, Laboratoire Vellave sur l’Elaboration et l’Etude des MatériauxClermont Université, UdALe Puy-en-VelayFrance

Personalised recommendations