Advertisement

Oxidation of Metals

, Volume 82, Issue 5–6, pp 383–393 | Cite as

Microstructural Characteristics of Oxide Films Grown on Zr–0.7Sn–1Nb–0.03Fe–0.2Ge Alloy Corroded in Lithiated Water at 360 °C

  • Jinlong Zhang
  • Xingfei Xie
  • Meiyi Yao
  • Bangxin Zhou
  • Jianchao Peng
Original Paper

Abstract

The corrosion resistance of a Zr–0.7Sn–1Nb–0.03Fe–0.2Ge (wt%) alloy was investigated by autoclave test in lithiated water with 0.01 M LiOH at 360 °C under a pressure of 18.6 MPa. The microstructure of the oxide film which formed was examined by TEM and SEM. The results revealed that there were a few micro-cracks and more ZrO2 columnar grains in the oxide film formed after exposure for 190 days. The oxidation of second-phase particles (SPPs) was slower than that of α-Zr matrix. The c-ZrO2 was observed around the [Zr–Nb–Fe–Cr–Ge]O SPPs. The amorphous phase produced around the [Zr–Nb–Fe–Cr–Ge]O SPPs could relax the stress in the oxide film. The addition of Ge can reduce micro-pores and micro-cracks formed in oxide film, and delay the microstructural evolution from columnar grains to equiaxed grains. Therefore, the addition of Ge can improve the corrosion resistance of the Zr–0.7Sn–1Nb–0.03Fe alloy.

Keywords

Zirconium alloy Germanium Corrosion resistance Oxide film Microstructure 

Notes

Acknowledgments

The authors would like to thank Mr. Weijun Yu, Mr. Yuliang Chu, Mr. Xue Liang and Dr. Pengfei Hu for their helping in the microstructure analysis. This study is partly supported by National Natural Science Foundation of China (No. 51171102) and National Advanced Pressurized Water Reactor Project of China (No. 2011ZX06004-023).

References

  1. 1.
    A. Yilmazbayhan, E. Breval, A. T. Motta, et al., J. Nucl. Mater. 349, 2006 (265).CrossRefGoogle Scholar
  2. 2.
    B. X. Zhou, Q. Li, M. Y. Yao, et al., in Zirconium in the Nuclear Industry: Fifteenth International Symposium (ASTM STP 1505, 2009), p. 360.Google Scholar
  3. 3.
    Y. Z. Liu, J. Y. Park, H. G. Kim, et al., Mater. Chem. Phys. 122, 2010 (408).CrossRefGoogle Scholar
  4. 4.
    W. Q. Liu, Q. Li, B. X. Zhou, et al., J. Nucl. Mater. 341, 2005 (97).CrossRefGoogle Scholar
  5. 5.
    H. G. Kim, S. Y. Park, et al., J. Nucl. Mater. 373, 2008 (429).CrossRefGoogle Scholar
  6. 6.
    M. Y. Yao, B. X. Zhou, Q. Li, et al., J. Nucl. Mater. 374, 2008 (197).CrossRefGoogle Scholar
  7. 7.
    B. X. Zhou, W. J. Zhao, et al., China Nuclear Science and Technology Report, CNIC-01074, SINRE-0066 (China Nuclear Information Center, Atomic Energy Press, 1996) (in Chinese).Google Scholar
  8. 8.
    H. Anada, B. J. Herb, K. Nomoto, S. Hagi, R. A. Graham, T. Kuroda, in Zirconium in the Nuclear Industry: Eleventh International Symposium (ASTM STP 1295, 1996), p. 74.Google Scholar
  9. 9.
    H. G. Kim, B. K. Choi and J. Y. Park, J. Alloy Compd. 481, 2009 (867).CrossRefGoogle Scholar
  10. 10.
    B. Wadman, Z. Lai, et al., in Zirconium in the Nuclear Industry: Tenth International Symposium (ASTM STP 1245, 1994), p. 579.Google Scholar
  11. 11.
    Y. H. Jeong, H. G. Kim and T. H. Kim, J. Nucl. Mater. 317, 2003 (1).CrossRefGoogle Scholar
  12. 12.
    H. S. Hong, J. S. Moon, S. J. Kim and K. S. Lee, J. Nucl. Mater. 297, 2001 (113).CrossRefGoogle Scholar
  13. 13.
    J. Y. Park, B. K. Choi, S. J. Yoo and Y. H. Jeong, J. Nucl. Mater. 359, 2006 (59).CrossRefGoogle Scholar
  14. 14.
    S. L. Li, M. Y. Yao, X. Zhang, J. Q. Geng, J. C. Peng and B. X. Zhou, Acta. Metall. Sin. 47, 2011 (163). (in Chinese).Google Scholar
  15. 15.
    W. P. Zhang, M. Y. Yao, L. Zhu, J. L. Zhang, B. X. Zhou and Q. Li, Corros. Prot. 34, 2013 (463). (in Chinese).Google Scholar
  16. 16.
    M. Y. Yao, L. H. Zou, X. F. Xie, J. L. Zhang, J. C. Peng and B. X. Zhou, Acta. Metall. Sin. 48, 2012 (1097). (in Chinese).Google Scholar
  17. 17.
    C. J. Wagner, J. Chem. Phys. 18, 1950 (62).CrossRefGoogle Scholar
  18. 18.
    K. Hauffe, Reactionen in und an fasten Stoffen, (Springer, Berlin, 1966).CrossRefGoogle Scholar
  19. 19.
    X. F. Xie, J. L. Zhang, L. Zhu, M. Y. Yao, B. X. Zhou and J. C. Peng, Acta Metall. Sin. 48, 2012 (1487). (in Chinese).Google Scholar
  20. 20.
    J. L. Zhang, X. F. Xie, M. Y. Yao, B. X. Zhou, J. C. Peng and X. Liang, Acta Metall. Sin. 49, 2013 (443). (in Chinese).Google Scholar
  21. 21.
    M. Schaffer, B. Schaffer and Q. Ramasse, Ultramicroscopy 114, 2012 (62).CrossRefGoogle Scholar
  22. 22.
    M. K. Miller, K. F. Russell, G. B. Thompson, et al., Microsc. Microanal. 13, 2007 (428).CrossRefGoogle Scholar
  23. 23.
    B. X. Zhou, Q. Li, W. Q. Liu, et al., Rare Met. Mater. Eng. 35, (7), 2006 (1009). (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jinlong Zhang
    • 1
    • 2
  • Xingfei Xie
    • 1
    • 2
  • Meiyi Yao
    • 1
    • 2
  • Bangxin Zhou
    • 1
    • 2
  • Jianchao Peng
    • 1
    • 2
  1. 1.Laboratory for MicrostructuresShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of MaterialsShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations