Oxidation of Metals

, Volume 82, Issue 3–4, pp 209–224 | Cite as

A Tension Analysis During Oxidation of Pure Aluminum Powder Particles: Non-isothermal Condition

  • S. Hasani
  • A. P. Soleymani
  • M. Panjepour
  • A. Ghaei
Original Paper


In this research the role of stress acting on the rupture of the oxide film on aluminum powder particles during oxidation under non-isothermal conditions was studied. For this purpose, aluminum particles went under TG-DTA heat analysis tests at different heating rates up to 1,300 °C. The results obtained from these tests showed that the major part of the oxidation took place at non-isothermal conditions close to 1,000 °C. The scanning electron microscope also provided information about the rupture behavior of the oxide film under the effect of the stresses resulting during this intense oxidation. The finite element method was employed to study the intensity of the factors generating stress on the oxide film. The results of this simulation regarding the analysis of the imposed stresses showed that the expansion of the melt inside the film and also the shrinkage resulting from the transformation of the oxide structure from γ to α could impose a high rate of stress on this crust during the heating of aluminum powder particles in a non-thermal manner close to the above temperature. Also, with regard to the results obtained from this stress analysis, it was specified that although the rate of the stress resulting from the expansion of the melt inside the oxide film relative to the stress resulting from its shrinkage was much higher quantitatively, this shrinkage was also an important factor in the direction of activating the defects present in the structure of the oxide film played a determining role in the occurrence of its rupture.


Aluminum powder Non-isothermal Alumina Tension analysis Finite element 


  1. 1.
    S. W. Chung, E. A. Guliants, C. E. Bunker, P. A. Jelliss and S. W. Buckner, Size-dependent nanoparticle reaction enthalpy: oxidation of aluminum nanoparticles. Journal of Physics and Chemistry of Solids 72, 714 (2011).Google Scholar
  2. 2.
    E. L. Dreizin, Metal-based reactive nanomaterials. Progress in Energy and Combustion Science 35, 141 (2009).Google Scholar
  3. 3.
    L. Galfetti, L. T. DeLuca, F. Severini, G. Colombo, L. Meda and G. Marra, Pre and post-burning analysis of nano-aluminized solid rocket propellants. Aerospace Science and Technology 11, 26 (2007).CrossRefGoogle Scholar
  4. 4.
    F. Maggi, A. Bandera, L. Galfetti, L. T. De Luca and T. L. Jackson, Efficient solid rocket propulsion for access to space. Acta Astronautica 66, 1563 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi and S. Bellucci, Nanoparticles for solid rocket propulsion. Journal of Physics: Condensed Matter 18, S1991 (2006).Google Scholar
  6. 6.
    S. Hasani, M. Panjepour and M. Shamanian, A study of the effect of aluminum on MoSi2 formation by self-propagation high-temperature synthesis. Journal of Alloys and Compounds 502, 80 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Hasani, M. Panjepour and M. Shamanian, Effect of atmosphere and heating rate on mechanism of MoSi2 formation during self-propagating high-temperature synthesis. Journal of Thermal Analysis and Calorimetry 107, 1073 (2012).CrossRefGoogle Scholar
  8. 8.
    H. Y. Jeong, K. P. So, J. J. Bae, S. H. Chae, T. H. Ly, T. H. Kim, D. H. Keum, C. K. Kim, J. S. Hwang, Y. J. Choi and Y. H. Lee, Tailoring oxidation of Al particles morphologically controlled by carbon nanotubes. Energy 55, 1143 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Cai, Y. Li, J. Wu and G. Ling, Preparation of self-healing a-Al2O3films by low temperature thermal oxidation. Oxidation of Metals 81, 253 (2014).Google Scholar
  10. 10.
    F. Velasco, S. Guzman, C. Moral and A. Bautista, Oxidation of micro-sized aluminium particles: hollow alumina spheres, Oxidation of Metals 80, 403 (2013).Google Scholar
  11. 11.
    S. Hasani, M. Panjepour and M. Shamanian, The oxidation mechanism of pure aluminum powder particles. Oxidation of Metals 78, 179 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Hasani, M. Panjepour and M. Shamanian, Non-isothermal kinetic analysis of oxidation of pure aluminum powder particles, Oxidation of Metals 81, 299 (2014).Google Scholar
  13. 13.
    V. Kolarik, M. M. Juez-Lorenzo and H. Fietzek, Oxidation of micro-sized spherical aluminium particles. Materials Science Forum 696, 290 (2011).CrossRefGoogle Scholar
  14. 14.
    L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates. Physical Review B 62, 4707 (2000).CrossRefGoogle Scholar
  15. 15.
    L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Structure and morphology of aluminum-oxide films formed by thermal oxidation of aluminum. Thin Solid Films 418, 89 (2002).CrossRefGoogle Scholar
  16. 16.
    L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Composition and chemical state of the ions of aluminum-oxide films formed by thermal oxidation of aluminum. Surface Science 506, 313 (2002).CrossRefGoogle Scholar
  17. 17.
    L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics 92, (3), 1649 (2002).CrossRefGoogle Scholar
  18. 18.
    O. A. Riano, J. Wadsworth and O. D. Sherby, Deformation of fine-grained alumina by grain boundary sliding accommodated by slip. Acta Materialia 51, 3617 (2003).CrossRefGoogle Scholar
  19. 19.
    I. Levin and D. Brandon, Metastable alumina polymorphs: Crystal structures and transition sequences. Journal of American Ceramic Society 81, (8), 1995 (1998).CrossRefGoogle Scholar
  20. 20.
    M. A. Trunov, M. Schoenitz, X. Zhu and E. L. Dreizin, Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combustion and Flame 140, 310 (2005).CrossRefGoogle Scholar
  21. 21.
    M. A. Trunov, M. Schoenitz and E. L. Dreizin, Ignition of aluminum powders under different experimental conditions. Propellants, Explosives, Pyrotechnics 30, (1), 36 (2005).CrossRefGoogle Scholar
  22. 22.
    E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed, (Butterworth-Heinemann, Oxford, 1992).Google Scholar
  23. 23.
    Z. L. Greer, Temperature, Frequency, and Young’s Modulus of an Aluminum Tuning Fork, International School Bangkok. Journal of Physics 5, (1), 1 (2011).Google Scholar
  24. 24.
    G. Yamaguchi and H. Yanagida, Thermal Effects on the Lattices of η and γ Aluminum Oxide. Bulletin of Chemistry Society of Japan 37, 1964 (1229).CrossRefGoogle Scholar
  25. 25.
    J. R. Kissell and R. L. Ferry, Aluminum Structures; A Guide to Their Specifications and Design, 2nd ed, (John Wiley & Sons, Inc., 2002), pp. 101–103.Google Scholar
  26. 26.
    J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings Properties, Processes, and Applications, (ASM International, Materials Park, 2004).Google Scholar
  27. 27.
    G. Mathers, The Welding of Aluminum and its Alloys, (Cambridge, England, 2000), p. 226.Google Scholar
  28. 28.
    J. R. Davis, Aluminum and Aluminum Alloys, The Materials Information Society, (ASM International, 1998), pp. 81–85.Google Scholar
  29. 29.
    T. C. Chou, T. G. Nieh and S. D. Mc, Adaras, and G.M. Pharr, Microstructures and Mechanical Properties of Thin Films of Aluminum Oxide. Scripta Metallurgica 25, 2203 (1991).CrossRefGoogle Scholar
  30. 30.
    P. Boch, J. C. Niepce, Ceramic Materials; Processes, Properties and Applications, ISTE (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Hasani
    • 1
  • A. P. Soleymani
    • 1
  • M. Panjepour
    • 1
  • A. Ghaei
    • 2
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations