Skip to main content
Log in

Effect of Pre-oxidation on Carburisation and Metal Dusting of Nano-crystalline Ni–Cr Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Nanocrystalline (NC) Ni–Cr coatings, containing 5, 10 and 20 wt% Cr were prepared using magnetron sputtering deposition, on the substrates of the same composition materials. These alloys were tested in 47 %CO–47 %H2–6 %H2O for 50 h at 650 °C. Weight gain kinetics showed that increasing Cr content decreased the carburisation kinetics. After reaction, the NC coatings containing high Cr (10 and 20 wt%) remained, with the formation of surface and inner Cr2O3 and internal precipitates of fine carbon deposits for Ni–10Cr and Cr7C3 for Ni–20Cr. In contrast, the Ni–5Cr coated sample suffered a severe metal dusting with whole coating scale was destroyed completely. Preoxidation of these alloys and their miro-grained counterparts was conducted before metal dusting. It was found that preoxidation significantly reduced weight gain kinetics. This reduction effect is more significant for NC Ni–Cr alloys than the micro-grained alloys. The critical chromium concentration for protective chromia scale formation and for internal chromium carbide formation were discussed using Wagner’s analysis and product solubility calculation, respectively. The effects of preoxidation and grain size on oxide formation and carburisation/metal dusting were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Pattinson, Journal of Iron & Steel Institute 1, 85 (1876).

    Google Scholar 

  2. R. F. Hochman, Theory of “metal dusting” in iron base alloys. Proceedings of the Materials Engineering and Sciences Division Biennial Conference, AIChE 1970, Session No. 48, 401 (1970).

  3. H. J. Grabke, R. Krajak and J. C. Nava, Paz. Corrosion Science 35, 1141 (1993).

    Article  Google Scholar 

  4. E. Pippel, J. Woltersdorf and R. Schneider, Materials and Corrosion 49, 309 (1998).

    Article  Google Scholar 

  5. C. M. Chun, T. A. Ramanarayanan and J. D. Mumford, Materials and Corrosion 50, 634 (1999).

    Article  Google Scholar 

  6. Z. Zeng, K. Natesan and V. A. Maroni, Oxidation of Metals 58, 147 (2002).

    Article  Google Scholar 

  7. C. H. Toh, P. R. Munroe and D. J. Young, Oxidation of Metals 58, 1 (2002).

    Article  Google Scholar 

  8. J. Zhang, A. Schneider and G. Inden, Corrosion Science 45, 1329 (2003).

    Article  Google Scholar 

  9. J. Zhang, A. Schneider and G. Inden, Corrosion Science 50, 1020 (2008).

    Article  Google Scholar 

  10. J. Zhang and D. J. Young, Corrosion Science 49, 1496 (2007).

    Article  Google Scholar 

  11. J. Zhang, P. Munroe and D. J. Young, Acta Materialia 56, 68 (2008).

    Article  Google Scholar 

  12. W. Brandl, G. Marginean, N. Marginean, V. Chirila and D. Utu, Corrosion Science 49, 3765 (2007).

    Article  Google Scholar 

  13. C. Rosado and M. Schütze, Materials and Corrosion 54, 831 (2003).

    Article  Google Scholar 

  14. C. S. Giggins and F. S. Pettit, Transactions TMS-AIME 245, 2509 (1969).

    Google Scholar 

  15. M. D. Merz, Metallurgical Transaction A 10, 71 (1979).

    Article  Google Scholar 

  16. X. Peng and F. Wang, in Oxidation-Resistant Nanocrystalline Coatings, Development in High-Temperature Corrosion and Protection of Materials, eds. W. Gao and Z. Li (CRC Press, Boca Raton, 2008).

    Google Scholar 

  17. H. Liu and W. Chen, Materials and Corrosion 59, 4 (2008).

    Google Scholar 

  18. C. Wagner, Zeitschrift Fur Elektrochemie 63, 772 (1959).

    Google Scholar 

  19. J.-W. Park and C. J. Altstetter, Metallurgical Transaction A 18A, 43 (1987).

    Article  Google Scholar 

  20. D. J. Young, High Temperature Oxidation and Corrosion of Metals, 1st ed, (Elsevier, Oxford, 2008).

    Google Scholar 

  21. C. Wagner, Journal of Electrochemical Society 99, 369 (1952).

    Article  Google Scholar 

  22. D. Caplan and G. I. Sproule, Oxidation of Metals 9, 459 (1975).

    Article  Google Scholar 

  23. A. T. Allen and D. L. Douglass, Oxidation of Metals 51, 199 (1999).

    Article  Google Scholar 

  24. T. Wada, H. Wada, J. F. Elliott and J. Chipman, Metallurgical Transaction 2, 2199 (1971).

    Article  Google Scholar 

  25. X. Peng, J. Yan, Y. Zhou and F. Wang, Acta Materialia 53, 5079 (2005).

    Article  Google Scholar 

  26. Z. Huang, X. Peng, C. Xu and F. Wang, Journal of Electrochemical Society 156, C95 (2009).

    Article  Google Scholar 

  27. D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang, J. M. Cairney, Scripta Materialia. doi:10.1016/j.scriptamat.2014.01.009.

Download references

Acknowledgment

Financial support by UNSW Science Faculty Research Fund is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Z., Zhang, J., Kong, C. et al. Effect of Pre-oxidation on Carburisation and Metal Dusting of Nano-crystalline Ni–Cr Alloys. Oxid Met 81, 645–660 (2014). https://doi.org/10.1007/s11085-014-9472-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9472-9

Keywords

Navigation