Skip to main content
Log in

High-Temperature Corrosion of Aluminized and Chromized Fe–25.8 %Cr–19.5 %Ni Alloys in N2/H2S/H2O-Mixed Gases

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Alloys of Fe–25.8 %Cr–19.5 %Ni (SUS310 stainless steel) were either chromized or aluminized via pack cementation, and corroded at 800 °C for 100 h in 1 atm of (0.9448 atm of N2 + 0.031 atm of H2O + 0.0242 atm of H2S)-mixed gases. The chromized layer consisted primarily of Cr1.36Fe0.52 and some Cr23C6. Its corrosion resulted in the formation of Cr2S3 and some FeS and Fe5Ni4S8. The aluminized coating consisted primarily of FeAl. Its corrosion resulted in the formation of α-Al2O3, Al2S3, and Cr2S3. Aluminizing was more effective than chromizing in increasing the corrosion resistance of the substrate, due mainly to the formation of α-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Cambridge, 2008).

    Google Scholar 

  2. J. Shen, L. Zhou and T. Li, Oxidation of Metals 48, 347 (1997).

    Article  Google Scholar 

  3. R. John, R. A. Cottis, M. J. Graham, R. Lindsay, S. B. Lyon, J. A. Richardson, J. D. Scantlebury and F. H. Stott, Shreir’s Corrosion, Vol. 1, 4th edn., (Elsevier, Oxford, 2010).

    Google Scholar 

  4. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, (ASM Int, Materials Park, 2002), p. 135.

    Google Scholar 

  5. N. Birks, G. H. Meier and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd edn., (Cambridge Univ, Cambridge, 2006).

    Book  Google Scholar 

  6. S. Mrowec and M. Wedrychowska, Oxidation of Metals 13, 481 (1979).

    Article  Google Scholar 

  7. M. Danielewski, S. Mrowec and A. Stołosa, Oxidation of Metals 17, 77 (1982).

    Article  Google Scholar 

  8. S. Mrowec and K. Przybylski, Oxidation of Metals 23, 107 (1985).

    Article  Google Scholar 

  9. R. Sivakumar and E. J. Rao, Oxidation of Metals 17, 391 (1982).

    Article  Google Scholar 

  10. S. W. Green and F. H. Stott, Corrosion Science 33, 345 (1992).

    Article  Google Scholar 

  11. W. T. Tsai and K. E. Huang, Thin Solid Films 366, 164 (2000).

    Article  Google Scholar 

  12. S. Sharafi and M. R. Farhang, Surface and Coatings Technology 200, 5048 (2006).

    Article  Google Scholar 

  13. Z. E. Majid and M. Lambertin, Materials Science and Engineering 87, 205 (1987).

    Article  Google Scholar 

  14. Z. Zhan, Z. Liu, J. Liu, L. Li, Z. Li and P. Liao, Applied Surface Science 256, 3874 (2010).

    Article  Google Scholar 

  15. S. W. Green and F. H. Stott, Oxidation of Metals 36, 239 (1991).

    Article  Google Scholar 

  16. N. J. Simms, J. F. Norton and T. M. Lowe, Journal de Physique IV 3, 807 (1993).

    Article  Google Scholar 

  17. D. Bell, B. Towler and M. Fan, Coal Gasification and Its Applications, (Elsevier, Amsterdam, 2010), p. 137.

    Google Scholar 

  18. S. G. Kim, Y. J. Park, K. H. Yeo and J. H. Lee, Korean Journal of Metals and Materials 50, 809 (2012).

    Article  Google Scholar 

  19. G. H. Meier, C. Cheng, R. A. Perkins and W. Bakker, Surface and Coatings Technology 39, 53 (1989).

    Article  Google Scholar 

  20. C. T. Liu and J. D. Wu, Surface and Coatings Technology 43, 493 (1990).

    Article  Google Scholar 

  21. J. W. Lee and J. G. Duh, Surface and Coatings Technology 177, 525 (2004).

    Article  Google Scholar 

  22. D. Y. Chang, S. Y. Lee and S. S. Kang, Surface and Coatings Technology 116, 391 (1999).

    Article  Google Scholar 

  23. N. Lin, F. Xie, T. Zhong, X. Wu and W. Tian, Journal of Rare Earths 28, 301 (2010).

    Article  Google Scholar 

  24. N. Lin, F. Xie, H. Yang, W. Tian, H. Wang and B. Tang, Applied Surface Science 258, 4960 (2012).

    Article  Google Scholar 

  25. K. Bouché, F. Barbier and A. Coulet, Materials Science and Engineering A249, 167 (1998).

    Article  Google Scholar 

  26. W. J. Cheng and C. J. Wang, Surface and Coatings Technology 204, 824 (2009).

    Article  Google Scholar 

  27. M. R. Bateni, S. Shaw, P. Wei and A. Petric, Materials and Manufacturing Processes 24, 626 (2009).

    Article  Google Scholar 

  28. H. Ahmadi and D. Y. Li, Wear 255, 933 (2003).

    Article  Google Scholar 

  29. M. Zandrahimi, J. Vatandoost and H. Ebrahimifar, Oxidation of Metals 76, 347 (2011).

    Article  Google Scholar 

  30. P. Kofstad, Solid State Ionics 12, 101 (1984).

    Article  Google Scholar 

  31. I. Barin, Thermochemical Data of Pure Substances, (VCH, Weinhein, 1989).

    Google Scholar 

  32. E. F. Sinyakova and V. I. Kosyakov, Inorganic Materials 37, 1130 (2001).

    Article  Google Scholar 

  33. Y. Chen, D. J. Young and S. Blairs, Oxidation of Metals 40, 433 (1993).

    Article  Google Scholar 

  34. H. Habazaki, H. Mitsui, K. Ito, K. Asami, K. Hashimoto and S. Mrowec, Corrosion Science 44, 285 (2002).

    Article  Google Scholar 

  35. M. F. Chen and D. L. Douglass, Oxidation of Metals 33, 103 (1990).

    Article  Google Scholar 

Download references

Acknowledgment

This paper was supported by Samsung Research Fund, Sungkyunkwan University, 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Bok Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.C., Kim, M.J. & Lee, D.B. High-Temperature Corrosion of Aluminized and Chromized Fe–25.8 %Cr–19.5 %Ni Alloys in N2/H2S/H2O-Mixed Gases. Oxid Met 81, 617–630 (2014). https://doi.org/10.1007/s11085-014-9470-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9470-y

Keywords

Navigation