Skip to main content
Log in

Microstructural Investigation of the HCl-Induced Corrosion of the Austenitic Alloy 310S (52Fe26Cr19Ni) at 500 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper investigates the influence of 500 ppm HCl in a 5 %O2–95 %N2 atmosphere on the oxidation of the austenitic stainless steel AISI 310S at 500 °C. Laboratory exposures were made for one, 24, 72 and 168 h and the samples were analysed with XRD, SEM/EDX, FIB and TEM/EDX. When exposed in oxygen a thin and protective chromium-rich oxide scale forms. Addition of HCl causes significantly accelerated corrosion. Within the first hour of exposure, accumulations of FeCl2, CrCl2 and NiCl2 forms below the chromium-rich oxide, especially at steel grain boundaries. The chlorine-induced corrosion is suggested to occur through an electrochemical reaction, in which the dissociation of HCl to form chloride ions at the scale surface is coupled to the oxidation of the metal surface beneath the scale by an outwards electronic current and inwards diffusion of chloride ions along oxide grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Kofstad, High Temperature Corrosion. (Elsevier Applied Science Publishers Ltd, London, 1988).

  2. N. Birks and G. H. Meier, in Introduction to High Temperature Oxidation of Metals, ed. E. Arnold, 2nd edn (Cambridge University Press, Cambridge, 2006).

  3. S. Y. Lee and M. J. McNallan, Journal of the Electrochemical Society 137, 472 (1990).

    Article  Google Scholar 

  4. S. Y. Lee and M. J. McNallan, Corrosion 47, 868 (1991).

    Article  Google Scholar 

  5. Y. Y. Lee and M. J. McNallan, Metallurgical Transactions a-Physical Metallurgy and Materials Science 18, 1099 (1987).

    Article  Google Scholar 

  6. M. J. McNallan, W. W. Liang, S. H. Kim and C. T. Kang, Accelleration of the High Temperature Oxidation of Metals by Chlorine. High Temperature Corrosion, (NACE, Houston, 1983), p. 316.

    Google Scholar 

  7. F. H. Stott and C. Y. Shih, Materials and Corrosion 51, 277 (2000).

    Article  Google Scholar 

  8. J.-M. Abels and H–. H. Strehblow, Corrosion Science 39, 115 (1997).

    Article  Google Scholar 

  9. R. Bender and M. Schutze, Materials and Corrosion 54, 652 (2003).

    Article  Google Scholar 

  10. H. J. Grabke, E. Reese and M. Spiegel, Corrosion Science 37, 1023 (1995).

    Article  Google Scholar 

  11. V. A. C. Haanappel, N. W. J. Haanappel, T. Fransen, H. D. van Corbach and P. J. Gellings, Corrosion 48, 812 (1992).

    Article  Google Scholar 

  12. A. S. Kim and M. J. McNallan, Corrosion 46, 746 (1990).

    Article  Google Scholar 

  13. J. C. Liu and M. J. McNallan, Materials and Corrosion 50, 253 (1999).

    Article  Google Scholar 

  14. S. Sroda, S. Tuurna, K. Penttila and L. Heikinheimo, Materials Science Forum 461–464, 981 (2004).

    Article  Google Scholar 

  15. F. H. Stott and C. Y. Shih, Oxidation of Metals 54, 425 (2000).

    Article  Google Scholar 

  16. N. Sämann, M. Spiegel and H. J. Grabke, Materials Science Forum 369–3, 963 (2001).

    Article  Google Scholar 

  17. A. Zahs, M. Spiegel and H. J. Grabke, Materials and Corrosion 50, 561 (1999).

    Article  Google Scholar 

  18. A. Zahs, M. Spiegel and H. J. Grabke, Corrosion Science 42, 1093 (2000).

    Article  Google Scholar 

  19. X. J. Zheng and R. A. Rapp, Oxidation of Metals 48, 553 (1997).

    Article  Google Scholar 

  20. N. Folkeson, L. G. Johansson and J. E. Svensson, Journal of the Electrochemical Society 154, C515 (2007).

    Article  Google Scholar 

  21. T. Jonsson, J. Froitzheim, J. Pettersson, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Oxidation of Metals 72, 213 (2009).

    Article  Google Scholar 

  22. C. Pettersson, T. Jonsson, C. Proff, M. Halvarsson, J. E. Svensson and L. G. Johansson, Oxidation of Metals 74, 93 (2010).

    Article  Google Scholar 

  23. J. Park, S. Ryu, M. S. Han and S. J. Oh, Physical Review B 37, 10867 (1988).

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out within the Swedish High Temperature Corrosion Centre (HTC) at Chalmers University of Technology. A grant from the Knut and Alice Wallenberg Foundation for acquiring the FEG SEM instrument is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jonsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonsson, T., Folkeson, N., Halvarsson, M. et al. Microstructural Investigation of the HCl-Induced Corrosion of the Austenitic Alloy 310S (52Fe26Cr19Ni) at 500 °C. Oxid Met 81, 575–596 (2014). https://doi.org/10.1007/s11085-013-9468-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9468-x

Keywords

Navigation