Oxidation of Metals

, Volume 81, Issue 1–2, pp 227–236 | Cite as

Comparative Study of Micro- and Nano-structured Coatings for High-Temperature Oxidation in Steam Atmospheres

  • F. J. Pérez
  • S. I. Castañeda
  • M. P. Hierro
  • R. Escobar Galindo
  • J. C. Sánchez-López
  • S. Mato
Original Paper


For many high-temperature applications, coatings are applied in order to protect structural materials against a wide range of different environments: oxidation, metal dusting, sulphidation, molten salts, steam, etc. The resistance achieved by the use of different kind of coatings, such as functionally graded material coatings, has been optimized with the latest designs. In the case of supercritical steam turbines, many attempts have been made in terms of micro-structural coatings design, mainly based on aluminides, and other diffusion coating systems in order to consider alternatives, nano-structured coatings based on Cr and Al compositions and deposited by a physical vapor deposition technique, were assessed to high-temperature oxidation resistance in steam environments. The oxidation kinetics where analyzed for up to 2,000 h at 650 °C by means of gravimetric measurements. The evaporation behavior was also analyzed by thermogravimetric-mass spectrometry. Excellent results where observed for some of the nano-structured coatings tested. Those results where compared to results obtained for micro-structured coatings. Based on that comparison, it was deduced that the nano-structured coatings have a potential application as protective systems in high-temperature steam environments.


Steam oxidation Nano-structured coatings CrAlN coatings FeAl coatings 



The present work was supported by the Spanish Ministry of Science and Technology, projects ENE2008-06755-C02-02 and CONSOLIDER CSD2008-00023. Dr. R. Escobar Galindo acknowledges financial support through Ramon y Cajal Spanish programme (RyC2007-0026). The authors would like to thank to TEKNIKER and Inasmet research centers at the Basque Country in Spain to provide the nano-structured coated samples.


  1. 1.
    A. Aguero, R. Muelas, A. Pastor and S. Osgerby, Surface and Coatings Technology 200, (5–8), 1224–1229 (2005).Google Scholar
  2. 2.
    P. J. Ennis and W. J. Qudakkers, International Journal of Pressure and Vessels Piping 84, 75 (2007).CrossRefGoogle Scholar
  3. 3.
    G. Scheffknecht and Q. Chen, 5th International Parsons Conference, (July 2000, Cambridge).Google Scholar
  4. 4.
    C. Berger, R. B. Scarlin, K. H. Mayer, D. V Thornton and S. M Beech, Materials for Advanced Power Engineering, Liege, (Kluwer Academic Press, Dordrecht, 1994) Part I, 47.Google Scholar
  5. 5.
    J.C. Nava-Paz and R. Knödler, Materials for Advanced Power Engineering, Liege, (Nov. 1998).Google Scholar
  6. 6.
    V. Lepingle, G. Louis, D. Petelot, B. Lefebre, J.C. Vaillant, Eurocorr Conference London, (Sept. 2000).Google Scholar
  7. 7.
    J. P. T. Vossen, P. Gawenda, K. Rahts, M. Röhrig, M. Schorr and M. Schütze, Materials at High Temperatures 14, 387 (1997).Google Scholar
  8. 8.
    P. J. Ennis, A. Zielinska-Lipiec, O. Wachter and A. Czyrska-Filemonowicz, Acta Materialia 45, 4901 (1997).CrossRefGoogle Scholar
  9. 9.
    B. A. Pint and Y. Zhang, Mater. Corr. 62, 549 (2011).CrossRefGoogle Scholar
  10. 10.
    K. Zabelt, Technische Überwachung 39, 11 (1998).Google Scholar
  11. 11.
    R. Blum, Q. Chen, C. Coussement, J. Gabrel, C. Testani, L. Verelst, VGB Kongreß Essen, Okt. (2000).Google Scholar
  12. 12.
    R. Knödler, P. J. Ennis, BALTICA V conference, Porvoo, Finland, June (2001).Google Scholar
  13. 13.
    ORDICO project in GROWTH, Ref. Nr.: G4RD-2000-00319.Google Scholar
  14. 14.
    P. Niranatlumpong and H. E. Evans, Oxidation of Metals 53, 241 (2000).CrossRefGoogle Scholar
  15. 15.
    C. V. Cojocaru, D. Lévesque, C. Moreau and R. S. Lima, Surface and Coatings Technology 216, 215–223 (2013).CrossRefGoogle Scholar
  16. 16.
    J. A. Haynes, K. A. Unocic and B. A. Pint, Surface and Coatings Technology, 215, 39 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Agüero, R. Muelas and V. Gonzalez, Materials and Corrosion 59, 393 (2008).CrossRefGoogle Scholar
  18. 18.
    W. Gao, Z. Liu and Z. Li, Advanced Materials 13, 1001 (2001).CrossRefGoogle Scholar
  19. 19.
    W. Gao and Z. Li, Materials Research 7, 175 (2004).CrossRefGoogle Scholar
  20. 20.
    P. E. Hovsepian, A. P. Ehiasarian and I. Petrov, Surface Engineering 26, 610 (2010).CrossRefGoogle Scholar
  21. 21.
    S. Tsipas, J. M. Brossard, M. P. Hierro, J. A. Trilleros, L. Sánchez, F. J. Bolívar and F. J. Pérez, Surface and Coatings Technology 201, 4489 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • F. J. Pérez
    • 1
  • S. I. Castañeda
    • 1
  • M. P. Hierro
    • 1
  • R. Escobar Galindo
    • 2
  • J. C. Sánchez-López
    • 3
  • S. Mato
    • 1
  1. 1.Department of Materials Science and Engineering, Facultad de Ciencias QuímicasUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones CientíficasMadridSpain
  3. 3.Instituto de Ciencia de Materiales de Sevilla (CSIC-US)SevillaSpain

Personalised recommendations