Skip to main content
Log in

The Effect of Environmental Sulfur on the Establishment and Structural Stability of Alumina Scales

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Single-phase γ-Ni of composition (in at.%) Ni–6.3Al–5.4Cr is borderline between forming Al2O3 internally or externally. Oxidation of this alloy in air and O2 + 1 %SO2 was carried out at 1,000 °C for 20 h. In air, the alloy oxidized in a mixed mode, with regions forming a non-protective product of internal Al2O3/NiAl2O4 and external NiO. When oxidized in O2 + 1 %SO2, the alloy formed a continuous Al2O3 scale. Thus, a small amount of sulfur in the atmosphere promoted the transition from internal to external Al2O3-scale formation. In a parallel study, single-phase γ′-Ni3Al of composition (in at.%) Ni–5Cr–20Al–3Pt–0.1Hf–0.05Y was oxidized at 900 °C for 20 h in air, O2 + 0.1 %SO2 and in air with an Na2SO4 deposit. For all conditions, external alumina scales were established. Metastable Ө-Al2O3 formed when oxidation took place in air alone, whereas the stable α-Al2O3 formed during oxidation in O2 + 0.1 %SO2 and in air with an Na2SO4 deposit. Thus, sulfur from the salt deposit or gas atmosphere promoted the Ө-Al2O3 → α-Al2O3 transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Asmundis, F. Gesmundo and C. Bottino, Oxidation of Metals 14, 351 (1980).

    Article  Google Scholar 

  2. A. G. Andersen and P. Kofstad, Oxidation of Metals 43, 301 (1995).

    Article  CAS  Google Scholar 

  3. M. Benlyamani, F. Ajersch and G. Kennedy, Oxidation of Metals 29, 203 (1988).

    Article  CAS  Google Scholar 

  4. B. Gleeson, Materials Research 7, 61 (2004).

    Article  CAS  Google Scholar 

  5. F. Gesmundo, D. J. Young and S. K. Roy, High Temperature Materials and Processes 8, 149 (1989).

    Article  CAS  Google Scholar 

  6. M. F. Stroosnijder and W. J. Quadakkers, High Temperature Technology 4, 141 (1986).

    CAS  Google Scholar 

  7. J. Stringer, in High-Temperature Oxidation and Sulphidation Processes, ed. J. D. Embury (Pergamon Press, New York, 1990).

    Google Scholar 

  8. H. J. Grabke, R. Lobnig and P. Papaiacovou, in Selected Topics in High Temperature Chemistry: Defect Chemistry of Solids, eds. Ø. Johannesen and A. G. Andersen (Elsevier, New York, 1989), p. 263.

    Chapter  Google Scholar 

  9. K. Natesan, Corrosion 41, 646 (1985).

    Article  CAS  Google Scholar 

  10. W. T. Bakker and J. Stringer, Materials at High Temperatures 14, 101 (1997).

    CAS  Google Scholar 

  11. F. H. Stott and J. F. Norton, Materials at High Temperatures 14, 132 (1997).

    Google Scholar 

  12. A. Rahmel, Werkstoff Korrosion 23, 273 (1972).

    Google Scholar 

  13. T. Flatley and N. Birks, JISI 209, 523 (1971).

    CAS  Google Scholar 

  14. P. Y. Hou, Journal of Materials Science Letters 19, 577 (2000).

    Article  CAS  Google Scholar 

  15. K. A. Kubena, G. H. Meier and F. S. Pettit, in John Stringer Symposium on High Temperature Corrosion, eds. P. F. Tortorelli, et al. (ASM International, Materials Park, 2003), p. 157.

    Google Scholar 

  16. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  CAS  Google Scholar 

  17. W. Zhao. PhD thesis, University of Pittsburgh (2012).

  18. H. J. Grabke, R. Möller and A. Schnaas, Werkstoff Korrosion 30, 794 (1979).

    Article  CAS  Google Scholar 

  19. G. Luckman and R. S. Polizzotti, Metallurgical and Materials Transactions A 16, 133 (1985).

    Article  Google Scholar 

  20. X. Liu. PhD thesis, University of Pittsburgh (to be published in 2013).

  21. W. Zhao, Z. Q. Li and B. Gleeson, Oxidation of Metals 79, 361 (2013).

    Article  CAS  Google Scholar 

  22. M. Brumm and H. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  23. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).

    Article  CAS  Google Scholar 

  24. R. Bagwell, G. Messing and P. Howell, Journal of Materials Science 36, 1833 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the US Office of Naval Research, award N000014-09-1-1127 and managed by Dr. David Shifler. The authors would also like to thank Dr. Wei Zhao for his help with the kinetics analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Gleeson, B. The Effect of Environmental Sulfur on the Establishment and Structural Stability of Alumina Scales. Oxid Met 80, 517–527 (2013). https://doi.org/10.1007/s11085-013-9444-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9444-5

Keywords

Navigation