Skip to main content
Log in

Oxidation Kinetics of AISI 441 Ferritic Stainless Steel at High Temperatures in CO2 Atmosphere

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ferritic stainless steels used as interconnectors in SOFC stacks are subjected to air and fuel atmospheres at 800 °C. The use of hydrogen as fuel gas may be substituted by fermentative biogas consisting of mainly CO2 and CH4. In this gas mixture, carbon dioxide leads to steel oxidation whereas methane induces carburization. The objective of this study was to investigate the oxidation kinetics of the AISI 441 ferritic stainless steel under pure CO2 in order to understand oxidation mechanisms. The results show that the kinetic behaviour is linear at low temperatures (800–900 °C) and initially linear then parabolic at higher temperatures (925–1,000 °C). Oxide scale consisted of major Cr2O3-rich oxide, topped with MnCr2O4 and a dispersion of TiO2. The chromium-rich oxide was analysed by using the photoelectrochemical method. It exhibits N-type semi-conductor. Oxidation kinetics is modelled by the mixed surface and oxide-diffusion limited steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. V. Herle, Y. Membrez and O. Bucheli, Journal of Power Sources 127, 300 (2004).

    Article  Google Scholar 

  2. I. V. Yentekakis, Journal of Power Sources 160, 422 (2004).

    Article  Google Scholar 

  3. P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters and A. Galerie, Materials and Corrosion 62, 616 (2011).

    Article  Google Scholar 

  4. R. C. Yin, Corrosion Science 47, 1896 (2005).

    Article  Google Scholar 

  5. R. C. Yin, Materials Science and Engineering A 380, 281 (2004).

    Article  Google Scholar 

  6. S. Valette, A. Denoirjean, D. Tétard and P. Lefort, Journal of Alloys and Compounds 413, 222 (2006).

    Article  Google Scholar 

  7. D. B. Lee and J. W. Choi, Oxidation of Metals 64, 329 (2005).

    Article  Google Scholar 

  8. C. T. Fujii and R. A. Meussner, Journal of Electrochemical Society 114, 435 (1967).

    Article  Google Scholar 

  9. F. Goutier, S. Valette, A. Vardelle and P. Lefort, Corrosion Science 52, 2403 (2010).

    Article  Google Scholar 

  10. G. J. Billings, W. W. Smeltzer and J. S. Kirkaldy, J. Electrochemical Society: Solid state science 117, 111 (1970).

    Article  Google Scholar 

  11. A. S. Reeves and W. W. Smeltzer, Journal of Electrochemical Society 117, (1), 117 (1970).

    Article  Google Scholar 

  12. A. Moosa, J. K. Ahmed and A. Hoobi, Chinese Journal of Aeronautics 20, 134 (2007).

    Google Scholar 

  13. Y. Wouters, Oxydation thermique des métaux dans la vapeur d’eau, cas du nickel et du titane, PhD thesis, (INP Grenoble, Grenoble, 1996) (in French).

  14. S. Chandra-ambhorn, Reactivity and surface modification of stainless steels used as electric interconnectors in high temperature solid oxide fuel cells, PhD thesis, (INP Grenoble, Grenoble, 2006).

  15. F. Toscan, Optimisation conjointe de l’adhérence des couches d’oxydes et des cinetiques d’oxydation thermique sur acier inoxydables, PhD thesis, (INP Grenoble, Grenoble, 2004) (in French).

  16. A. Srisrual, S. Coindeau, A. Galerie, J.-P. Petit and Y. Wouters, Corrosion Science 51, 562 (2009).

    Article  Google Scholar 

  17. E. W. A. Young, P. C. M. Stiphout and J. H. W. De Wit, Journal of Electrochemical Society 132, 884 (1985).

    Article  Google Scholar 

  18. FACTSAGE 5.5, Thermfact and GTT-technologies, (CNRS-LTPCM, Grenoble, 2007).

  19. P. Sarrazin, A. Galerie and J. Fouletier, Mechanisms of High Temperature Corrosion: Kinetic Approach, (Trans Tech, Zurich, 2008).

    Google Scholar 

  20. J. P. Abellan, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 26, 63 (2009).

    Article  Google Scholar 

  21. J. P. Abellan, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted in the frame of the 2007–2008 “Hubert Curien” Franco-Thai program on “Biogas-fuelled SOFC interconnect: Reactivity and Surface modification” coordinated by the Thai-French Innovation Centre (TFIC) of King Mongkut’s University of Technology North Bangkok. This research has also been under international PhD thesis co-supervision between Grenoble INP and Chulalongkorn University. The authors thank Mr. Abdel halim Loucif for technical support of photoelectrochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobboon Lothongkum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Promdirek, P., Lothongkum, G., Chandra-Ambhorn, S. et al. Oxidation Kinetics of AISI 441 Ferritic Stainless Steel at High Temperatures in CO2 Atmosphere. Oxid Met 81, 315–329 (2014). https://doi.org/10.1007/s11085-013-9432-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9432-9

Keywords

Navigation