Skip to main content

Isothermal Oxidation Behaviour of Nanocrystalline RuAl Intermetallic Thin Films

Abstract

It has been demonstrated that intermetallic thin films usually show different oxidation rates compared to those of bulk materials. Within the intermetallic phases, RuAl thin films have not been thoroughly investigated. Thereby, new studies of these systems are needed. Single-phase RuAl was found to be a promising candidate for protective coating material in applications that demand oxidation resistance. An important advantage of this system over other B2-aluminides arises on the coefficient of thermal expansion (CTE), which is substantially lower than that of FeAl, CoAl and NiAl, and it is closer to that of the α-Al2O3, thus increasing the adherence to the alumina protective layer, by decreasing the CTE mismatch between each other. In the present work, the isothermal oxidation behaviour of single-phase RuAl thin films deposited onto austenitic stainless steel substrates was studied in ambient air at 750 and 900 °C for short times (up to 60 min.). Scanning transmission electron microscopy and X-ray diffraction were performed for the subsequent analysis of the oxide scale. A protective α-Al2O3 scale was formed and in comparison to other aluminides, no evidence of the formation of transient alumina was found even at temperatures as low as 750 °C, being this fact an advantage over the most studied aluminides. The presence of particles at the metal/oxide interface is an indication that the oxide growth is dominated by the outward diffusion of Al cations. Moreover, this growth is described by a parabolic law showing an oxidation rate k x  = 1.3 × 10−13 cm2/s at 900 °C and the corresponding oxidation activation energy is 116.4 ± 7.5 kJ/mol. The sufficient Al flux to the oxidation front, in combination with the narrow inter-nuclei spacing lead to a faster formation of continuous α-Al2O3 compared to bulk RuAl, as a consequence of the high density of grain boundaries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    F. Mücklich, N. Ilić, and K. Woll, Intermetallics 16, 593 (2008).

    Article  Google Scholar 

  2. 2.

    F. Soldera, N. Ilic, S. Brännström, I. Barrientos, H. Gobran, and F. Mücklich, Oxidation of Metals 59, 529 (2003).

    Article  CAS  Google Scholar 

  3. 3.

    B. Tryon, T. M. Pollock, M. F. X. Gigliotti, and K. Hemker, Scripta Materialia 50, 9 (2003).

    Google Scholar 

  4. 4.

    F. Soldera, N. Ilić, N. Manent Conesa, I. Barrientos, and F. Mücklich, Intermetallics 13, 101 (2005).

    Article  CAS  Google Scholar 

  5. 5.

    N. Ilić, F. Soldera, and F. Mücklich, Intermetallics 13, 444 (2005).

    Article  Google Scholar 

  6. 6.

    P. J. Bellina, A. Catanoiu, F. M. Morales, and M. Rühle, Journal of Material Research 2, 276 (2006).

    Article  Google Scholar 

  7. 7.

    F. Cao, T. K. Nandy, D. Stobbe, and T. M. Pollock, Intermetallics 15, 34 (2007).

    Article  CAS  Google Scholar 

  8. 8.

    F. Cao and T. M. Pollock, Acta Materialia 55, 2715 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    N. Zotov, K. Woll, and F. Mücklich, Intermetallics 18, 1507 (2010).

    Article  CAS  Google Scholar 

  10. 10.

    K. Woll, R. Chinnam, and F. Mücklich. MRS Proceedings (2008), p. 1128.

  11. 11.

    D. Zhong, G. G. Mustoe, J. Moore, and J. Disam, Surface and Coatings Technology 146–147, 312 (2001).

    Article  Google Scholar 

  12. 12.

    A. Y. Yi and A. Jain, Journal of the American Ceramic Society 88, 579 (2005).

    Article  CAS  Google Scholar 

  13. 13.

    M. A. Guitar, K. Woll, E. Ramos-Moore, and F. Mücklich, Thin Solid Films 527, 1 (2013).

    Article  CAS  Google Scholar 

  14. 14.

    A. Huntz, Journal of Materials Science Letters 8, 1981 (1999).

    Article  Google Scholar 

  15. 15.

    H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  CAS  Google Scholar 

  16. 16.

    G. H. Meier, Materials and Corrosion 47, 595 (1996).

    Article  CAS  Google Scholar 

  17. 17.

    R. Prescott and M. J. Graham, Oxidation of Metals 38, 73 (1992).

    Article  CAS  Google Scholar 

  18. 18.

    H. J. Grabke, Materials Science Forum 251–254, 149 (1997).

    Article  Google Scholar 

  19. 19.

    C. Choux, A. J. Kulińska, and S. Chevalier. Intermetallics 16, 1 (2008).

  20. 20.

    R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).

    Article  CAS  Google Scholar 

  21. 21.

    H. J. Grabke, Intermetallics 7, 1153 (1999).

    Article  CAS  Google Scholar 

  22. 22.

    D. Barber, Philosophical Magazine 10, 75 (1964).

    Article  CAS  Google Scholar 

  23. 23.

    F. Mücklich and N. Ilić, Intermetallics 13, 5 (2005).

    Article  Google Scholar 

  24. 24.

    ASM Handbook, Vol. 3. Alloy Phase Diagrams (1992).

  25. 25.

    J. Doychak and M. Rühle, Oxidation of Metals 31, 431 (1989).

    Article  CAS  Google Scholar 

  26. 26.

    G. Cao, L. Geng, Z. Zheng, and M. Naka, Intermetallics 15, 1672 (2007).

    Article  CAS  Google Scholar 

  27. 27.

    F. Wang, Oxidation of Metals 48, 215 (1997).

    Article  CAS  Google Scholar 

  28. 28.

    J. G. Goedjen and D. A. Shores, Oxidation of Metals 37, 125 (1992).

    Article  CAS  Google Scholar 

  29. 29.

    V. Trindade, U. Krupp, and B. Hanjari, Materials Research 8, 371 (2005).

    Article  CAS  Google Scholar 

  30. 30.

    H. Lou, F. Wang, S. Zhu, B. Xia, and L. Zhang. Surface and Coatings Technology 63, 105 (1994).

    Google Scholar 

  31. 31.

    Z. Liu, W. E. I. Gao, K. L. Dahm, and F. Wang, Acta Materialia 46, 1691 (1998).

    Article  CAS  Google Scholar 

  32. 32.

    S. Choi, H. Cho, and D. Lee, Oxidation of Metals 46, 109 (1996).

    Article  CAS  Google Scholar 

  33. 33.

    D. R. Clarke, Acta Materialia 51, 1393 (2003).

    Article  CAS  Google Scholar 

  34. 34.

    M. Schütze, Protective Oxide Scales and Their Breakdown. ISBN 0-471-95904 9 (1991).

  35. 35.

    G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).

    Article  CAS  Google Scholar 

  36. 36.

    A. Kumar, M. Nasrallah, and D. Douglass, Oxidation of Metals 8, 227 (1974).

    Article  CAS  Google Scholar 

  37. 37.

    K. Reddy, J. Smialek, and A. Cooper, Oxidation of Metals 17, 429 (1982).

    Article  CAS  Google Scholar 

  38. 38.

    S. Choi, H. Cho, Y. Kim, D. Lee. Oxidation of Metals 46, 51 (1996).

    Google Scholar 

  39. 39.

    J. Smialek, J. Doychak, and D. Gaydosh, Oxidation of Metals 34, 259 (1990).

    Article  CAS  Google Scholar 

  40. 40.

    P. Hou, Journal of the American Ceramic Society 86, 660 (2003).

    Article  CAS  Google Scholar 

  41. 41.

    C. Xu, W. Gao, and H. Gong, Intermetallics 8, 769 (2000).

    Article  CAS  Google Scholar 

  42. 42.

    R. Klumpes, C. Maree, E. Schramm, and J. Wit, Materials and Corrosion 47, 619 (1996).

    Article  CAS  Google Scholar 

  43. 43.

    H. Grabke, M. Brumm, and B. Wagemann, Materials and Corrosion 47, 675 (1996).

    Article  CAS  Google Scholar 

  44. 44.

    D. Zhong, J. J. Moore, E. Sutter, and B. Mishra, Surface and Coatings Technology 200, 1236 (2005).

    Article  CAS  Google Scholar 

  45. 45.

    C. H. Xu, W. Gao, and Y. D. He, Scripta Materialia 42, 975 (2000).

    Article  CAS  Google Scholar 

  46. 46.

    K. N. Lee and W. L. Worrell, Oxidation of Metals 32, 357 (1989).

    Article  CAS  Google Scholar 

  47. 47.

    H. X. Dong, Y. Jiang, Y. H. He, J. Zou, N. P. Xu, B. Y. Huang, et al., Materials Chemistry and Physics 122, 417 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded within a research project MU 959/24-1 of the Deutsche Forschungsgemeinschaft (DFG). The authors would like to thank the EFRE Funds of the European Commission for support of activities within the AME-Lab project. The authors are also grateful to Prof. Seidel, from the Department of Mechatronics, Saarland University, for the use of the magnetron sputtering device; and to Dr. F. Soldera, Dr. C. Gachot, Dipl.-Ing. N. Souza, Dipl.-Ing. C. Pauly and Dipl.-Ing. Sebastián Suarez for the usefully comments and discussion. A.Guitar is grateful to the German Academic Exchange Service (DAAD) for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Mücklich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guitar, M.A., Mücklich, F. Isothermal Oxidation Behaviour of Nanocrystalline RuAl Intermetallic Thin Films. Oxid Met 80, 423–436 (2013). https://doi.org/10.1007/s11085-013-9409-8

Download citation

Keywords

  • B2-RuAl
  • Aluminides
  • Oxidation
  • Thin films