Skip to main content
Log in

Effect of H2O and CO2 on the Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Cyclic oxidation testing was conducted on alloy MA956 and two different batches of alloy PM2000 at 1,100 and 1,200 °C in different atmospheres rich in O2, H2O and CO2. Compared to 1 h cycles in dry O2, exposure in air + 10 vol.% H2O resulted in an increase of the oxidation rate and a decrease of the time to breakaway for all alloys at 1,200 °C, and a faster consumption of Al in the MA956 alloy. One hour cyclic testing in 49.25 % CO2 + 50 % H2O + 0.75 % O2 had a smaller effect on the oxidation rate but led to increased formation of voids in alloy MA956, which had an impact on the alloy creep resistance. At 1,100 °C, exposure in 50 % CO2 + 50 % H2O resulted in significant oxide spallation compared with oxidation in air, but this was not the case when 0.75 % O2 was added to the CO2/H2O mixture as a buffer. The control of impurity levels drastically improved the oxidation resistance of PM2000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. C. Healy, M. Rees, J. D. Parker, R. C. Hurst, in The proceedings of the Seventh International Conference on the Creep and Fracture of Engineering Materials and Structures, Vol. 719 (University of California, Irvine, CA, 1997).

  2. W. J. Quadakkers and K. Bongartz, Materials and Corrosion 45, 232 (1994).

    Article  CAS  Google Scholar 

  3. J. R. Nicholls, R. Newton, N. J. Simms and J. F. Norton, Materials at High Temperatures 20, 93 (2003).

    Article  CAS  Google Scholar 

  4. H. Al-Badairy and G. J. Tatlock, Materials at High Temperatures 17, 133 (2000).

    CAS  Google Scholar 

  5. A. Kolb-Telieps, U. Miller, H. Al-Badairy, G. J. Tatlock, D. Naumenko, W. J. Quadakkers, G. Strehl, G. Borchardt, R. Newton, J. R. Nicholls, M. Maier and D. Baxter, European Federation of Corrosion publications 34, 123 (2001).

    CAS  Google Scholar 

  6. A. Vande Put, S. Dryepondt and B. A. Pint, NACE Paper 19608, Houston, TX, presented at NACE Corrosion 2010 (Houston, TX, 2011).

    Google Scholar 

  7. R. Janakiraman, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 30, 2905 (1999).

    Article  Google Scholar 

  8. S. Hayashi and T. Narita, Oxidation of Metals 56, 251 (2001).

    Article  CAS  Google Scholar 

  9. M. C. Maris-Sida, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 34, 2609 (2003).

    Article  Google Scholar 

  10. B. A. Pint, J. A. Haynes, Y. Zhang, K. L. More and I. G. Wright, Surface and Coatings Technology 201, 3852 (2006).

    Article  CAS  Google Scholar 

  11. B. A. Pint and I. G. Wright, NACE Paper 10–198, Houston, TX, presented at Corrosion 2010 (San Antonio, TX, 2010).

    Google Scholar 

  12. C. Mennicke, E. Schumann, C. Ulrich and M. Rühle, Materials Science Forum 251–254, 389 (1997).

    Article  Google Scholar 

  13. J. Smialek, Materials Science Forum 595–598, 191 (2008).

    Article  Google Scholar 

  14. I. G. Wright, R. Peraldi and B. A. Pint, Materials Science Forum 461, 579 (2004).

    Article  Google Scholar 

  15. L. Marechal, B. Lesage, A. M. Huntz and R. Molins, Oxidation of Metals 60, 1 (2003).

    Article  CAS  Google Scholar 

  16. Y. L. Chen and A. R. Jones, Metallurgical and Materials Transactions A 32, 2077 (2001).

    Article  Google Scholar 

  17. Y. L. Chen, A. R. Jones and U. Miller, Metallurgical and Materials Transactions A 33, 2713 (2002).

    Article  Google Scholar 

  18. M. Turker, Journal of Materials Science 40, 1201 (2005).

    Article  CAS  Google Scholar 

  19. V. Provenzano, K. Sadananda, N. P. Louat and J. R. Reed, Surface and Coatings Technology 36, 61 (1988).

    Article  CAS  Google Scholar 

  20. G. Merceron, R. Molins and J. L. Strudel, Materials at High Temperatures 17, 149 (2000).

    CAS  Google Scholar 

Download references

Acknowledgments

The author wish to acknowledge G. Garner, T. Lowe, M. Stephens and J. Moser for assistance with the experimental work, as well as D. N. Leonard for EPMA analysis, M. Lance for stress measurement using the PSLS technique and K. Strader for the specimen porosity analysis. They also thank M. Brady, P. Tortorelli and I. Wright for reviewing the manuscript. This research was sponsored by the U.S. Department of Energy, Fossil Energy Advanced Materials Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Dryepondt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dryepondt, S., Rouaix-Vande Put, A. & Pint, B.A. Effect of H2O and CO2 on the Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl. Oxid Met 79, 627–638 (2013). https://doi.org/10.1007/s11085-013-9382-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9382-2

Keywords

Navigation