Skip to main content

Advertisement

Log in

Effects of Process Parameters on Mechanical Adhesion of Thermal Oxide Scales on Hot-Rolled Low Carbon Steels

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The present work investigated the effects of process parameters in a hot-rolling line, finishing and coiling temperatures, on mechanical adhesion of scale on low carbon steel substrate using a tensile test. Modification of our previous model to quantify mechanical adhesion energy was proposed for a system consisting of a cracked scale on a metallic substrate by introducing a distribution function of stress in scale. When a linear distribution was assumed, the quantified mechanical adhesion energy lay in the range of 40–890 J m−2. Higher finishing temperature had a prominent role on increasing final scale thickness and weakening scale adhesion. For scale with similar thickness, the mechanical adhesion energy was lowered for the sample subjected to higher temperature gradient between finishing and coiling temperatures. This was considered to be from the increased water vapour in atmosphere due to the higher amount of water used to cool down the steel strip. The mechanical adhesion test was further conducted to attest this assumption. It was found that humidified atmosphere during oxidation weakened the scale adhesion to low carbon steel substrate measured at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  CAS  Google Scholar 

  2. C. W. Tuck, M. Odgers and K. Sachs, Corrosion Science 9, 271 (1969).

    Article  CAS  Google Scholar 

  3. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 53, 433 (2000).

    Google Scholar 

  4. R. Y. Chen and W. Y. D. Yuen, The 41st MWSP Conference Proceeding, Vol. 37 (ISS, Indianapolis, 1999), pp. 697–705.

  5. Y. Kondo, H. Tanei, N. Suzuki, K. Ushioda and M. Maeda, ISIJ International 51, 1696 (2011).

    Article  CAS  Google Scholar 

  6. K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj and S. Chandra-ambhorn, Steel Research International, 2012; Metal Forming Special Edition.

  7. S. Tanigushi, K. Yamamoto, D. Megumi and T. Shibata, Materials Science and Engineering A308, 250 (2001).

    Google Scholar 

  8. Y. Kondo, Steel Research International 81, 98 (2010).

    Google Scholar 

  9. S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters and A. Galerie, Steel Research International 81, 130 (2010).

    Google Scholar 

  10. M. Trull and J. H. Beynon, Materials Science and Technology 19, 749 (2003).

    Article  CAS  Google Scholar 

  11. F. Toscan, L. Antoni, Y. Wouters, M. Dupeux and A. Galerie, Materials Science Forum 461–464, 705 (2004).

    Article  Google Scholar 

  12. S. Chandra-ambhorn, F. Roussl-Dherbey, F. Toscan, Y. Wouters, A. Galerie and M. Dupeux, Materials Science and Technology 23, 497 (2007).

    Article  CAS  Google Scholar 

  13. S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan and A. Galerie, Journal of Power Sources 171, 688 (2007).

    Article  CAS  Google Scholar 

  14. J. Mougin, M. Dupeux, L. Antoni and A. Galerie, Materials Science and Engineering A359, 44 (2003).

    CAS  Google Scholar 

  15. X. Sun, W. N. Liu, E. Stephens and M. A. Khaleel, Journal of Power Sources 176, 167 (2008).

    Article  CAS  Google Scholar 

  16. U. R. Evans, An Introduction to Metallic Corrosion, (Arnold, London, 1948).

    Google Scholar 

  17. H. E. Evans, International Materials Review 40, 1 (1995).

    Article  CAS  Google Scholar 

  18. M. Schütze, Oxidation of Metals 44, 29 (1995).

    Article  Google Scholar 

  19. J. Robertson and M. I. Manning, Materials Science and Technology 6, 81 (1990).

    Article  CAS  Google Scholar 

  20. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, (McGraw-Hill, Singapore, 1970).

    Google Scholar 

  21. R. Y. Chen and W. Y. D. Yuen, in Developments in High-Temperature Corrosion and Protection of Materials, eds. W. Gao and Z. Li (Woodhead Publishing, Cambridge, 2008).

  22. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  CAS  Google Scholar 

  23. D. Londolt, Corrosion et Chimie de Surface des Métaux, (EPFL, Lausanne, 1997).

    Google Scholar 

Download references

Acknowledgments

This research work was granted by Thailand Commission of Higher Education giving via KMUTNB. Sahaviriya Steel Industries PCL. is acknowledged for providing materials for the study. Rajamangala University of Technology Suwannabhumi, Suphanburi Campus, is acknowledged for facilitating the use of tensile testing machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somrerk Chandra-ambhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra-ambhorn, S., Ngamkham, K. & Jiratthanakul, N. Effects of Process Parameters on Mechanical Adhesion of Thermal Oxide Scales on Hot-Rolled Low Carbon Steels. Oxid Met 80, 61–72 (2013). https://doi.org/10.1007/s11085-013-9370-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9370-6

Keywords

Navigation