Skip to main content
Log in

Early Stage Oxidation Initiation at Different Grain Boundaries of fcc Fe–Cr Binary Alloy: A Computational Chemistry Study

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Tight-binding quantum chemical molecular dynamics method has been applied in order to study the Σ3 (111), Σ5 (100) and random grain boundaries oxidation initiation mechanism of fcc Fe–Cr binary alloy in a boiling water reactor environment. The metal–water interaction at high temperatures causes diffusion of environmental species and segregation of metallic atoms. Water molecules favorably permeate through the random grain boundary (GB) to find the space generated by atomic rearrangement, although it is difficult to diffuse in the Σ3 (111) and Σ5 (100) grain boundaries. Moreover, applied strain creates extra spaces in the lattice that can facilitate the absorption of environmental species. The highly positively charged chromium and the negatively charged oxygen atoms or OH remain along the GB by forming bonds. The GB atoms selectively lose their valence electrons when dissociated atoms adsorb, indicating that the oxidation process is a possible mechanism of intergranular cracking initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Wang, T. Shoji and N. Kawaguchi, Corrosion 61, 137 (2005).

    Article  CAS  Google Scholar 

  2. T. Shoji, S. Suzuki and R. G. Ballinger, Proceedings of the 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, (Breckenridge, Colorado, 1995), p. 881.

  3. S. M. Bruemmer, B. W. Arey and L. A. Charlot, Corrosion 48, 42 (1992).

    Article  CAS  Google Scholar 

  4. L. E. Thomas and S. M. Bruemmer, Corrosion 56, 572 (2000).

    Article  CAS  Google Scholar 

  5. R. N. Parkins, Corrosion 52, 363 (1996).

    Article  CAS  Google Scholar 

  6. R. W. Staehle, in The Theory of Stress Corrosion Cracking in Alloys, ed. J. C. Scully (NATO, Brussels, 1971), p. 86.

  7. W. W. Smeltzer, Materials Science Forum 29, 151 (1989).

    Article  Google Scholar 

  8. G. P. Airey, Corrosion 35, 129 (1979).

    Article  CAS  Google Scholar 

  9. E. M. Lechochey, A. M. Brennenstuhl and I. Thompson, Corrosion Science 46, 2383 (2004).

    Article  Google Scholar 

  10. P. Lin, G. Palumbo, U. Erb and K. T. Aust, Scripta Materialia 33, 1387 (1995).

    Article  CAS  Google Scholar 

  11. V. Y. Gertsman, K. Tangri and R. Z. Valiev, Acta Materialia 42, 1785 (1994).

    CAS  Google Scholar 

  12. V. Y. Gertsman and S. M. Brummer, Acta Materialia 49, 1589 (2001).

    Article  CAS  Google Scholar 

  13. D. C. Crawford and G. S. Was, Metallurgical Transaction 23A, 1195 (1992).

    CAS  Google Scholar 

  14. U. Krupp, V. B. Trindade, P. Schmidt, H.-J. Christ, U. Buschmann and W. Wiechert, Defect and Diffusion Forum 237–240, 946 (2005).

    Article  Google Scholar 

  15. J. P. Buban, K. Matsunaga, J. Chen, N. Shibata, W. Y. Ching, T. Yamamoto and Y. Ikuhara, Science 311, 212 (2006).

    Article  CAS  Google Scholar 

  16. M. Yamaguchi, M. Shiga and H. Kaburaki, Science 307, 393 (2005).

    Article  CAS  Google Scholar 

  17. R. Wu, A. J. Freeman and G. B. Olson, Science 265, 376 (1994).

    Article  CAS  Google Scholar 

  18. Z. Z. Chen and C. Y. Wang, Physical Review B 72, 104101 (2005).

    Article  Google Scholar 

  19. R. Yang, Y. M. Wang, R. Z. Huang, H. Q. Ye and C. Y. Wang, Physical Review B 65, 094112 (2002).

    Article  Google Scholar 

  20. W. T. Geng, A. J. Freeman, R. Wu, C. B. Geller and J. E. Raynolds, Physical Review B 60, 7149 (1999).

    Article  CAS  Google Scholar 

  21. J. X. Shang, X. D. Zhao, F. H. Wang, C. Y. Wang and H. B. Xu, Computational Materials Science 38, 217 (2006).

    Article  CAS  Google Scholar 

  22. D. Farkas, S. V. Petegem, P. M. Derlet and H. V. Swygenhoven, Acta Materialia 53, 3115 (2005).

    Article  CAS  Google Scholar 

  23. N. K. Das, Fundamental Mechanistic Study of Stress Corrosion Cracking: Quantum Chemical Molecular Dynamics Approach, Ph.D. Dissertation (Graduate School of Engineering, Tohoku University, Japan, 2008).

  24. N. K. Das, K. Suzuki, Y. Takeda, K. Ogawa and T. Shoji, Corrosion Science 50, 1701 (2008).

    Article  CAS  Google Scholar 

  25. N. K. Das, K. Suzuki, K. Ogawa and T. Shoji, Corrosion Science 51, 908 (2009).

    Article  CAS  Google Scholar 

  26. N. K. Das, T. Shoji and Y. Takeda, Corrosion Science 52, 2349 (2010).

    Article  CAS  Google Scholar 

  27. http://accelrys.com/products/materials-studio/. Accessed Oct 2007.

  28. H. Ogawa, Materials Transaction 47, 2706 (2006).

    Article  CAS  Google Scholar 

  29. N. K. Das and T. Shoji, International Journal of Hydrogen Energy 38, 1644 (2013).

    Article  CAS  Google Scholar 

  30. F. Ahmed, M. K. Alam, A. Suzuki, M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, C. A. D. Carpio, M. Kubo and A. Miyamoto, Journal of Physical Chemistry C 113, 15676 (2009).

    Article  CAS  Google Scholar 

  31. R. W. Balluffi, American Society of Metals, (Metal Park, Ohio, 1980).

    Google Scholar 

  32. P. J. Gellings and M. A. D. Jongh, Corrosion Science 7, 413 (1967).

    Article  CAS  Google Scholar 

  33. K. P. R. Reddy and A. R. Cooper, American Ceramic Society Bulletin 55, 402 (1976).

    Google Scholar 

  34. A. Ul-Hamid, Oxidation of Metals 57, 217 (2002).

    Article  CAS  Google Scholar 

  35. W. M. Yin, S. H. Whang and R. A. Mirshams, Acta Materialia 53, 383 (2005).

    Article  CAS  Google Scholar 

  36. W. M. Yin and S. H. Whang, Scripta Materialia 44, 569 (2001).

    Article  CAS  Google Scholar 

  37. N. Wang, Z. Wang, K. T. Aust and U. Erb, Materials Science and Engineering A 237, 150 (1997).

    Article  Google Scholar 

  38. V. B. Trindade, U. Krupp, B. Z. Hanjari, S. Yang and H.-J. Christ, Materials Research Bulletin 8, 317 (2005).

    Article  Google Scholar 

  39. P. Fernández, M. García-Mazaría, A. M. Lancha and J. Lapena, Journal of Nuclear Materials 329–333, 273 (2004).

    Article  Google Scholar 

  40. J. Lapena, M. García-Mazaría, P. Fernández and A. M. Lancha, Journal of Nuclear Materials 283–287, 662 (2000).

    Article  Google Scholar 

  41. A. U. Seybolt, Journal of Electrochemical Society 107, 147 (1960).

    Article  CAS  Google Scholar 

  42. D. Caplan and M. Cohen, Journal of Electrochemical Society 112, (5), 471 (1965).

    Article  CAS  Google Scholar 

  43. D. P. Whittle and G. C. Wood, Journal of Electrochemical Society 115, (2), 133 (1968).

    Article  CAS  Google Scholar 

  44. D. Mortimer and M. L. Post, Corrosion Science 8, 499 (1968).

    Article  CAS  Google Scholar 

  45. H. Asteman, J.-E. Svensson and L.-G. Johansson, Journal of Electrochemical Society 151, B141 (2004).

    Article  CAS  Google Scholar 

  46. H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).

    Article  CAS  Google Scholar 

  47. H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  48. H. Asteman, J.-E. Svensson and L.-G. Johansson, Corrosion Science 44, 2635 (2002).

    Article  CAS  Google Scholar 

  49. J. L. Smialek, Metallurgical Transactions 9A, 309 (1978).

    CAS  Google Scholar 

  50. J. Stringer, I. M. Allam and D. P. Whittle, Thin Solid Films 45, 377 (1977).

    Article  CAS  Google Scholar 

  51. R. Molins, G. Hochestetter, J. C. Chassaigne and E. Andrieu, Acta Materialia 45, 663 (1997).

    Article  CAS  Google Scholar 

  52. J. Tong, S. Dalby and J. Byrne, Journal of Materials Science 40, 1237 (2005).

    Article  CAS  Google Scholar 

  53. L. V. Saraf, A. S. Lea, C. M. Wang, A. Dohnalkova and B. W. Arey, Microscopy and Microanalysis 16, 690 (2010).

    Article  CAS  Google Scholar 

  54. E. L. Hall and C. L. Briant, Metallurgical Transaction A 15A, 793 (1984).

    Article  CAS  Google Scholar 

  55. R. L. Tapping, R. D. Davidson, E. McAlpine and D. H. Lister, Corrosion Science 26, 563 (1986).

    Article  CAS  Google Scholar 

  56. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, (McGraw-Hill, New York, 1989).

    Google Scholar 

  57. K. B. Wiberg and P. R. Rablen, Journal of Computational Chemistry 14, 1504 (1993).

    Article  CAS  Google Scholar 

  58. N. K. Das and T. Shoji, Applied Surface Science 258, 442 (2011).

    Article  CAS  Google Scholar 

  59. S. Veliah, K. Xiang, R. Pandey, J. M. Recio and J. M. Newsam, Journal Physical Chemistry B 102, 1126 (1998).

    Article  CAS  Google Scholar 

  60. N. K. Das, I. Tirtom and T. Shoji, Materials Chemistry and Physics 122, 336 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by the PEACE-E Phase II program jointly supported EDF, EPRI, SSM, TEPCO, KEPCO, Tohoku EPCO, Chubu EPCO, JAPCO, HITACHI Ltd., MHI, TOSHIBA Co., and IHI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishith Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, N.K., Shoji, T. Early Stage Oxidation Initiation at Different Grain Boundaries of fcc Fe–Cr Binary Alloy: A Computational Chemistry Study. Oxid Met 79, 429–441 (2013). https://doi.org/10.1007/s11085-013-9366-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9366-2

Keywords

Navigation