Skip to main content
Log in

Study of Conductivity of K41X Chromia Forming Alloy in High Temperature Electrolysis Environment

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Alloy K41X has been proposed as interconnect material for high temperature vapor electrolysis (HTVE) devices. This chromia forming alloy (alloy K41X) was oxidized at 800 °C in a thermobalance in oxidizing (synthetic air) and reducing (Ar–1 %H2–9 %H2O) environments for 250 h. The evolution of the contact resistance was evaluated using a dedicated device under the same conditions. There were higher oxidation kinetics rate in air than in Ar–1 %H2–9 %H2O but surprisingly, the corresponding area specific resistance (ASR) values were 20 times higher in Ar–1 %H2–9 %H2O mixture than in air. Additional tests and analyses (exposure in Ar–D2–H2O environment, GD-OES and SIMS analyses) clearly showed that the higher ASR value can be attributed to the presence of hydrogen in the oxide scale when exposed in Ar–H2–H2O mixture. In situ changes of atmosphere during ASR measurement showed the rapid kinetics for hydrogen desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Monceau and B. Pieraggi, Oxidation of metals 50, 477 (1998).

    Article  CAS  Google Scholar 

  2. S. Chevalier, Shreir’s Corrosion Vol. 1: Basic concepts, High Temperature Corrosion, (Elsevier, Amsterdam, 2010), pp. 132–152.

    Google Scholar 

  3. N. Bertrand, C. Desgranges, D. Poquillon, M. C. Lafont and D. Monceau, Oxidation of Metals 73, 139 (2010).

    Article  CAS  Google Scholar 

  4. Y. Gong, C. Wang, Q. Shen and l. Zhang, Materials Chemistry and Physics 116, 573 (2009).

    Article  CAS  Google Scholar 

  5. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins and M. Sennour, Journal of Power Sources 171, 652 (2007).

    Article  CAS  Google Scholar 

  6. M.R. Ardigo, I. Popa, S. Chevalier, C. Desgranges, and R. Bousquet, International Journal of Hydrogen Energy 37, 8177 (2012).

    Article  CAS  Google Scholar 

  7. X. Montero, F. Tietz, D. Stöver, M. Cassir and I. Villarreal, Corrosion Science 51, 110 (2009).

    Article  CAS  Google Scholar 

  8. C. Piaget and C. Desgranges, Etude de l’oxydation à haute température de matériaux d’interconnecteur pour l’Electrolyse à Haute Température (EHT), Technical Report No CEA/DEN/DANS/DPC/SCCME 09-793-A (CEA, 2009).

  9. S. Guillou, C. Cabet, C. Desgranges, L. Marchetti and Y. Wouters, Oxidation of Metals 76, 193 (2011).

    Article  CAS  Google Scholar 

  10. D. M. England and A. V. Virkar, Journal of the Electrochemical Society 146, 3196 (1999).

    Article  CAS  Google Scholar 

  11. D. M. England and A. V. Virkar, Journal of the Electrochemical Society 148, A330 (2001).

    Article  CAS  Google Scholar 

  12. A. Galerie, Y. Wouters and M. Caillet, Materials Science Forum 369–372, 231 (2001).

    Article  Google Scholar 

  13. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  CAS  Google Scholar 

  14. W. J. Quadakkers and J. Zurek, Shreir’s Corrosion Vol. 1: Basic concepts, High Temperature Corrosion, (Amsterdam, Elsevier, 2010), pp. 407–456.

    Google Scholar 

  15. T. Norby, Journal de Physique IV 3, 99 (1993).

    Article  CAS  Google Scholar 

  16. P. Kofstad, Oxydation of Metals 44, 3 (1995).

    Article  CAS  Google Scholar 

  17. K. Huang, P. Y. Hou and J. B. Goodenough, Solid State Ionics 129, 237 (2000).

    Article  CAS  Google Scholar 

  18. S. Guillou, Study of a chromia-forming alloy behavior as interconnect material for High Température Vapor Electrolysis, PhD Thesis, Université de Bourgogne, 2011.

  19. B. Tveten, G. Hultquist and T. Norby, Oxidation of Metals 51, 221 (1999).

    Article  CAS  Google Scholar 

  20. T. Norby, Selected Topics in High Temperature Chemistry, (Elsevier, London, 1989), pp. 101–142.

    Google Scholar 

  21. M. P. Brady, M. Fayek, J. R. Keiser, H. M. Meyer, K. L. More, L. M. Anovitz, D. J. Wesolowski and D. R. Cole, Corrosion Science 53, (5), 1633 (2011).

    Article  CAS  Google Scholar 

  22. A. Holt and P. Kofstad, Solid State Ionics 100, 201 (1997).

    Article  CAS  Google Scholar 

  23. A. Holt and P. Kofstad, Solid State Ionics 69, 137 (1994).

    Article  CAS  Google Scholar 

  24. H. Liu, S. B. Lyon and M. M. Stack, Oxidation of Metals 56, 147 (2001).

    Article  CAS  Google Scholar 

  25. P. Kofstad, Oxidation of Metals 44, (1–2), 3 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to M. Tabarant (CEA, DEN, DPC, SCP, Laboratoire de Réactivité des Surfaces et Interfaces F-91191 Gif-sur-Yvette, France), Y. Wouters (Science et Ingénierie des Matériaux et Procédés, CNRS UMR5266/Grenoble-INP/UJF, 38402 Saint Martin d’Hères Cedex, France) and F. Jomard (CNRS de Meudon-Bellevue, Laboratoire de Physique des Solides et de Cristallogenèse CNRS UMR 8635) for their precious help for analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Desgranges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillou, S., Desgranges, C. & Chevalier, S. Study of Conductivity of K41X Chromia Forming Alloy in High Temperature Electrolysis Environment. Oxid Met 79, 507–516 (2013). https://doi.org/10.1007/s11085-013-9361-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9361-7

Keywords

Navigation