Skip to main content
Log in

Adhesion of Thermal Oxide Scales on Hot-Rolled Conventional and Recycled Steels

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The mechanical adhesion of thermally-formed oxide scales formed on industrial hot-rolled low carbon steel strips produced through the blast-furnace route (conventional steel) or the electric-arc-furnace route (recycled steel) was studied. A new macro-tensile test was compared to a micro-tensile test previously used. It was observed that spallation of scales during straining increased with increasing the tensile strain rate. A higher strain rate resulted in a lower strain inducing the first spallation. As a result, the mechanical adhesion energy of scales actually formed on the recycled steel was in the range 300–700 J m−2. Comparison at the same strain rate of the conventional and recycled steels showed higher scale adhesion for the recycled steel due to the presence of high amounts of interfacial silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Sarrazin, A. Galerie, and J. Fouletier, Mechanisms of High Temperature CorrosionA Kinetic Approach, Materials Science Foundations, vol. 36–37 (Trans Tech Publ., Stafa-Zürich, 2008).

  2. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 56, 89 (2001).

    Article  CAS  Google Scholar 

  3. L. Suarez, R. Petrov, L. Kestens, M. Lamberigts, and Y. Houbaert, Materials Science Forum 550, 557 (2007).

    Article  CAS  Google Scholar 

  4. R. J. Fruehan (ed.), The Making, Shaping and Treating of Steel, 11th edn, (The AISE Foundation, Pittsburgh, 1998), pp. 475–660.

    Google Scholar 

  5. A. Ghosh and A. Chatterjee, Ironmaking and Steelmaking: Theory and Practice, (Prentice Hall of India, New Delhi, 2008), pp. 24–408.

    Google Scholar 

  6. A. Chattopadhyay, N. Bandyopadhyay, A. K. Das, and M. K. Panigrahi, Scripta Materialia 52, 211 (2005).

    Article  CAS  Google Scholar 

  7. M. Zhang and G. Shao, Materials Science and Engineering A 452–453, 189 (2007).

    Google Scholar 

  8. J. Mougin, M. Dupeux, A. Galerie, and L. Antoni, Materials Science and Technology 18, 1217 (2002).

    Article  CAS  Google Scholar 

  9. J. Mougin, M. Dupeux, L. Antoni, and A. Galerie, Materials Science and Engineering A 359, 44 (2003).

    Article  Google Scholar 

  10. F. Toscan, L. Antoni, Y. Wouters, M. Dupeux, and A. Galerie, Materials Science Forum 461–464, 705 (2004).

    Article  Google Scholar 

  11. S. Chandra-ambhorm, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, and M. Dupeux, Materials Science and Technology 23, 497 (2007).

    Article  Google Scholar 

  12. S. Chandra-ambhorn, K. Ngamkham, and N. Jiratthanakul, Oxidation of Metals (accepted).

  13. Y. T. Chiu, C. K. Lin, and J. C. Wu, Journal of Power Sources 196, 2005 (2011).

    Article  CAS  Google Scholar 

  14. M. Krzyzanowski and J. H. Beynon, Steel Research 70, 22 (1999).

    CAS  Google Scholar 

  15. M. Krzyzanowski and J. H. Beynon, Materials Science and Technology 15, 1191 (1999).

    CAS  Google Scholar 

  16. M. Krzyzanowski, J. H. Beynon, and C. M. Sellars, Metallurgical and Materials Transactions B 31, 1483 (2000).

    Article  Google Scholar 

  17. D. Geneve, D. Rouxel, P. Pigeat, and M. Confente, Corrosion Science 52, 1155 (2010).

    Article  CAS  Google Scholar 

  18. K. Ngamkham, S. Niltawach, and S. Chandra-ambhorn, Key Engineering Materials 462–463, 407 (2011).

    Article  Google Scholar 

  19. A. Galerie, F. Toscan, E. N’Dah, K. Przybylski, Y. Wouters, and M. Dupeux, Materials Science Forum 461–464, 631 (2004).

    Article  Google Scholar 

  20. S. Chandra-ambhorm, Y. Wouters, L. Antoni, F. Toscan, and A. Galerie, Journal of Power Sources 171, 688 (2007).

    Article  Google Scholar 

  21. S. Taniguchi, K. Yamamoto, D. Megumi, and T. Shibata, Materials Science and Engineering A 308, 250 (2001).

    Article  Google Scholar 

  22. L. Suarez, J. Schneider, and Y. Houbaert, Defect and Diffusion Forum 273–276, 655 (2008).

    Article  Google Scholar 

  23. Y.-L. Yang, C.-H. Yang, S.-N. Lin, C.-H. Chen, and W.-T. Tsai, Materials Chemistry and Physics 112, 566 (2008).

    Article  CAS  Google Scholar 

  24. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 63, 145 (2005).

    Article  CAS  Google Scholar 

  25. Y. Kondo, Materials Science Forum 522–523, 53 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

A research grant from Office of the Higher Education Commission of Thailand giving via KMUTNB is acknowledged. One of the authors (Thanasak Nilsonthi) has been granted a scholarship from KMUTNB for a Ph.D. study in co-supervision with Université de Grenoble, France. Sahaviriya Steel Industries public company limited and G Steel public company limited are acknowledged for providing the studied steels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somrerk Chandra-ambhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsonthi, T., Chandra-ambhorn, S., Wouters, Y. et al. Adhesion of Thermal Oxide Scales on Hot-Rolled Conventional and Recycled Steels. Oxid Met 79, 325–335 (2013). https://doi.org/10.1007/s11085-012-9356-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9356-9

Keywords

Navigation