Skip to main content
Log in

Zirconia Layer Formed by High Temperature Oxidation of Pure Zirconium: Stress Generated at the Zirconium/Zirconia Interface

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation of pure zirconium metal at high temperature (500 and 600 °C) under air at normal atmospheric pressure was investigated using the Raman Spectroscopy technique. Analysis of the absolute intensities as well as the positions of the Raman bands for the tetragonal and the monoclinic zirconia phases was performed. Evolution of the thermal stress has been presented and discussed in comparison to the Raman mode shift recorded in situ during cooling. Ex-situ analyses of cross-sections confirm the presence of tetragonal phase preferentially located close to the metal/oxide interface and show the existence of a relaxed and highly disordered tetragonal phase preferentially located in the outer part of the scale. Using a micro tension––compression machine, it is shown that compression loads lead to a significant intensity change of the Raman peaks for the tetragonal zirconia. The effect of tension load appears less clear which demonstrates that the relation between Raman peak shift and stress is not as simple as generally considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Bouvier, J. Godlewski and G. Lucazeau, Journal of Nuclear Materials 300, 2002 (118).

    Article  CAS  Google Scholar 

  2. C. Roy and B. Burgess, Oxidation of Metals 2, 1970 (235).

    Article  CAS  Google Scholar 

  3. M. Parise, O. Sicardy and G. Cailletaud, Journal of Nuclear Materials 256, 1998 (35).

    Article  CAS  Google Scholar 

  4. J. Godlewski, Oxydation d’alliages de zirconium en vapeur d’eau: influence de la zircone tetragonale sur le mécanisme de croissance de l’oxyde, Ph.D. thesis. Université de Technologie de Compiègne 1990.

  5. P. Bouvier, Etude Raman des distributions de phase de contrainte dans des couches d’oxydation d’alliages de zirconium Ph.D. thesis. Intitue National Politechnique de Genoble 2000.

  6. J. Godlewski, Tenth International Symposium on Zirconium in the Nuclear Industry: ASTM STP 1245 (1994).

  7. Le Duc Huy, P. Laffez, P. Daniel, A. Jouanneaux, N. The Khoi, D. Simeone, Materials Science and Engineering B104, 163 (2003).

  8. L. Kurpaska, M. El-Marssi, J. Favergeon, L. Lahoche, G. Moulin, J-M. Roelandt, Journal of Nuclear Materials, to be submitted (2012).

  9. P. Barberis and A. Frichet, Journal of Nuclear Materials 273, 1999 (182).

    Article  CAS  Google Scholar 

  10. J. E. Maslar, W. S. Hurst, W. J. Bowers Jr. and J. H. Hendricks, Journal of Nuclear Materials 298, 2001 (239).

    Article  CAS  Google Scholar 

  11. A. M. Huntz, Materials Science and Technology 4, 1988 (1079).

    Article  CAS  Google Scholar 

  12. L. Li, Modélisation numérique de l’endommagement des couches en proche surface: application aux systèmes Ni/NiO et Zr/ZrO 2 , Ph.D. thesis. Université de Technologie de Compiègne, 2011.

  13. X. G. Lu, M. Selleby and B. Sundman, Computer Coupling of Phase Diagrams and Thermochemistry 29, 2005 (68).

    Article  CAS  Google Scholar 

  14. S. K. Durrani, J. Akhtar, M. Ahmed and M. A. Hussain, Materials Chemistry and Physics 100, 2006 (324).

    Article  CAS  Google Scholar 

  15. N. Petigny, P. Barberis, C. Lemaignan, Ch Valot and M. Lallemant, Journal of Nuclear Materials 280, 2000 (318).

    Article  CAS  Google Scholar 

  16. P. Bouvier and G. Lucazeau, Journal of Physics and Chemistry of Solids 61, 2000 (569).

    Article  CAS  Google Scholar 

  17. P. Barberis, T. Merle-Mejean and P. Quintard, Journal of Nuclear Materials 246, 1997 (232).

    Article  CAS  Google Scholar 

  18. X. Iltis, F. Lefebvre and C. Lemaignan, Journal of Nuclear Materials 224, 1995 (191).

    Google Scholar 

  19. M. Wojdyr, Journal of Applied Crystallography 43, 2010 (1126).

    Article  CAS  Google Scholar 

  20. P. Barberis, G. Corolleur-Thomas, R. Guinebretiere, T. Merle-Mejean, A. Mirgorodsky and P. Quintard, Journal of Nuclear Materials 288, 2001 (241).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the “Region Picardie” and the European Regional Development Found (ERDF) for the financial support of this work through the “SIGMA-FILM” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Kurpaska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurpaska, L., Favergeon, J., Lahoche, L. et al. Zirconia Layer Formed by High Temperature Oxidation of Pure Zirconium: Stress Generated at the Zirconium/Zirconia Interface. Oxid Met 79, 261–277 (2013). https://doi.org/10.1007/s11085-012-9348-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9348-9

Keywords

Navigation