Skip to main content

Deposition of Manganese and Cobalt on Ferritic–Martensitic Steels via Pack Cementation Process

Abstract

Heat resistant ferritic–martensitic steels are of great interest for many applications at high temperatures. The working temperature of modern solid oxide fuel cells has decreased from 1,000 to 600–800 °C, which allows the application of ferritic steels for use as interconnect materials. Another possible application is for superheaters in fossil fuel power plants. However, such environments often contain a high amount of water vapor, which is known to promote the formation of volatile chromium species CrO2(OH)2 leading to insufficient oxidation resistance of Cr-steels. Spinel phases at the surface are believed to suppress this evaporation. Reference oxide samples were prepared to investigate the kinetics of the weight changes of chromia, manganese oxide, MnCr2O4-phase and MnCo2O4-phase without the influence of the substrate material. These samples were exposure to synthetic air with 10 % water vapor at 800 °C. The results confirm that an enrichment of manganese and cobalt in the metal subsurface zone can play a beneficial role. The diffusion of these elements via pack cementation into the steel subsurface zone is presented for conditions where the bulk phase is not altered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. N. Shaigan, W. Qu, D. G. Ivey and W. Chen, Journal of Power Sources 195, 1529 (2010).

    Article  CAS  Google Scholar 

  2. H. U. Anderson and F. Tietz, in High Temperature and Solid Oxide Fuel Cells, eds. C. S. Subhash and K. Kevin, (Elsevier Science, Amsterdam, 2003), p. 173.

  3. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperatures 20, 115 (2003).

    Article  CAS  Google Scholar 

  4. H. Zhang, Z. Zhan and X. Liu, Journal of Power Sources 196, 8041 (2011).

    Article  CAS  Google Scholar 

  5. W. Qu, L. Jian, J. M. Hill and D. G. Ivey, Journal of Power Sources 153, 114 (2006).

    Article  CAS  Google Scholar 

  6. J. W. Fergus, Materials Science and Engineering: A 397, 271 (2005).

    Article  Google Scholar 

  7. H. Asteman, J.-E. Svensson, L.-G. Johansson and M. Norell, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  8. M. Schütze, M. Schorr, D. Renusch, A. Donchev and J. Vossen, Materials Research 7, 111 (2004).

    Article  Google Scholar 

  9. K. Hilpert, D. Das, M. Miller, D. H. Peck and R. Weiß, Journal of the Electrochemical Society 143, 3642 (1996).

    Article  CAS  Google Scholar 

  10. M. Stanislowski, E. Wessel, K. Hilpert, T. Markus and L. Singheiser, Journal of the Electrochemical Society 154, A295 (2007).

    Article  CAS  Google Scholar 

  11. J. Malzbender, P. Batfalsky, R. Vaßen, V. Shemet and F. Tietz, Journal of Power Sources 201, 196 (2012).

    Article  CAS  Google Scholar 

  12. H.-G. Oehmigen, C. Berger, and H. Bretfeld, in Korrosionsschäden in Kraftwerken, ed. V. D. Ingenieure, (Düsseldorf, 1997), p. 231.

  13. P. J. Ennis and W. J. Quadakkers, VGB PowerTech 8, 87 (2001).

    Google Scholar 

  14. M. Stanislowski, J. Froitzheim, L. Niewolak, W. J. Quadakkers, K. Hilpert, T. Markus and L. Singheiser, Journal of Power Sources 164, 578 (2007).

    Article  CAS  Google Scholar 

  15. K. O. Hoyt, P. E. Gannon, P. White, R. Tortop, B. J. Ellingwood and H. Khoshuei, International Journal of Hydrogen Energy 37, 518 (2012).

    Article  CAS  Google Scholar 

  16. X. Xin, S. Wang, J. Qian, C. Lin, Z. Zhan and T. Wen, International Journal of Hydrogen Energy 37, 471 (2012).

    Article  CAS  Google Scholar 

  17. D. Schmidt and M. Schütze, Materials Science Forum 696, 330 (2011).

    Article  CAS  Google Scholar 

  18. H. Ebrahimifar and M. Zandrahimi, Surface and Coatings Technology 206, 75 (2011).

    Article  CAS  Google Scholar 

  19. Corrosion of metals and alloysTest method for isothermal exposure oxidation testing under high temperature corrosion conditions for metallic materials, No. ISO/DIS 21608 (2011).

  20. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. B. Mahfoud, J. Melan, A. D. Pelton and S. Petersen, Calphad 26, 189 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the German Ministry of Economics and Technology (BMWi) via AiF under IGF (German Federation of Industrial Research Associations)-contract no. 17205N which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Schmidt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, D., Galetz, M. & Schütze, M. Deposition of Manganese and Cobalt on Ferritic–Martensitic Steels via Pack Cementation Process. Oxid Met 79, 589–599 (2013). https://doi.org/10.1007/s11085-012-9340-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9340-4

Keywords

  • SOFC
  • Spinel phases
  • Cobalt deposition
  • Ferritic–martensitic steels