Skip to main content

Advertisement

Log in

Effect of Water Vapor on the Oxidation Mechanisms of a Commercial Stainless Steel for Interconnect Application in High Temperature Water Vapor Electrolysis

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

High temperature water vapor electrolysis is one of the most promising methods for hydrogen production. The interconnect is a key component in the electrolyse technology. In a previous paper, the high temperature corrosion resistance and the electrical conductivity of a commercial ferritic stainless steel, K41X (AISI 441), were assessed in both anode (95 %O2–5 %H2O) and cathode atmospheres (10 %H2–90 %H2O). In cathode atmosphere, ageing tests performed up to 1,000 h revealed the formation of a duplex oxide scale: an inner layer consisting of protective chromia and an outer layer comprised of a magnetite-type iron oxide. In this study, we further investigated the oxidation mechanisms of K41X alloy in cathode atmosphere by means of marker experiments using an inert marker (Au) and isotopes. SEM-EDX and SIMS characterizations were combined in order to determine the oxide scale growth processes. The roles played by hydrogen and water vapor are discussed and a diffusion mechanism is postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Z. Zhu and S. C. Deevi, Materials Research Bulletin 38, 957 (2003).

    Article  CAS  Google Scholar 

  2. W. Z. Zhu and S. C. Deevi, Materials Science and Engineering A348, 227 (2003).

    CAS  Google Scholar 

  3. M. R. Ardigo, V. Parry, I. Popa, S. Chevalier, W. Chandra-Ambhorn, P. Phakpetinaan and Y. Wouters, Defect and Diffusion Forum 323–325, 239 (2012).

    Article  Google Scholar 

  4. S. Chevalier, G. Bonnet, G. Borchardt, J. C. Colson and J. P. Larpin, Materials Science Forum 369–372, 327 (2001).

    Article  Google Scholar 

  5. M. J. Graham, J. I Eldrige, D. F. Mitchell and R. J. Hussey, Materials Science Forum 43, 207 (1989).

    Article  CAS  Google Scholar 

  6. M. Skeldon, J. M. Calvert and D. G. Lees, Oxidation of Metals 28, 109 (1987).

    Article  CAS  Google Scholar 

  7. A. Bruckman and G. Simkovich, Corrosion Science 12, 595 (1972).

    Article  CAS  Google Scholar 

  8. H. Evin, PhD Thesis, Universityof Burgundy, 2010.

  9. G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz and S. Chevalier, Scripta Materialia 57, 671 (2007).

    Article  CAS  Google Scholar 

  10. J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering A 477, 259 (2008).

    CAS  Google Scholar 

  11. S. Chevalier, P. Juzon, K. Przybylski and J.-P. Larpin, Science and Technology Advanced Materials 10, 1 (2009).

    Google Scholar 

  12. A. Galerie, Y. Wouters and M. Caillet, Materials Science Forum 369–372, 231 (2001).

    Article  Google Scholar 

  13. S. Henry, J. Mougin, Y. Wouters, J.-P. Petit and A. Galerie, Materials at High Temperature 17, 231 (2000).

    Article  CAS  Google Scholar 

  14. F. Jambon, L. Marchetti, F. Jomard and J. Chêne, Journal of Nuclear Materials 386–392, 414 (2011).

    Google Scholar 

  15. X. G. Zheng and D. J. Young, Oxidation of Metals 42, 163 (1994).

    Article  CAS  Google Scholar 

  16. A. H. Heuer, Journal of European Ceramic Society 28, 1459 (2008).

    Article  Google Scholar 

  17. R. Hecker, D. Stöver, H. Jonas and H. P. Buchkremer, Journal of Nuclear Materials 171, 84 (1990).

    Article  CAS  Google Scholar 

  18. M. Tanaka, M. Ueda, K. Kawamura and T. Maruyama, The Iron and Steel Institute of Japan 51, (4), 638 (2011).

    Article  CAS  Google Scholar 

  19. T. Norby, Journal de Physique IV Colloque C 9, 99 (1993).

    Google Scholar 

  20. B. Tveten, G. Hultquist and T. Norby, Oxidation of Metals 52, 221 (1999).

    Article  Google Scholar 

  21. P. Kofstad, Oxidation of Metals 44, 3 (1995).

    Article  CAS  Google Scholar 

  22. S. Guillou, C. Desgranges and S. Chevalier, Defect and Diffusion Forum 323–325, 577 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by French Research National Agency (ANR) through the PAN-H program (project ICARE n°ANR-08-PANH-009). The authors are thankful to Regional Council of Burgundy for the PhD financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Ardigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardigo, M.R., Popa, I., Chevalier, S. et al. Effect of Water Vapor on the Oxidation Mechanisms of a Commercial Stainless Steel for Interconnect Application in High Temperature Water Vapor Electrolysis. Oxid Met 79, 495–505 (2013). https://doi.org/10.1007/s11085-012-9338-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9338-y

Keywords

Navigation