Skip to main content
Log in

Atom Probe Tomography of Oxide Scales

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Atom probe tomography, APT, is the only microstructural method that can routinely analyse and position individual atoms in a material with a spatial resolution of 0.1–0.5 nm. Recent implementation of pulsed-laser to APT made investigation of less conducting materials, such as oxides, feasible. In this paper a short description of the principle of the techniques is presented, followed by examples of recent APT studies of thermally grown oxide scales produced on alumina formers (Pt-modified NiAl diffusion coating and FeCrAl alloy), at the crack tips in a Ni-based alloy and on a Zr-alloy. Additionally, results from preliminary studies of ZnO and MgO bulk materials are shown. The obtained information on the atomic scale about the chemistry variations in the scales and at the metal oxide interfaces provides valuable insights into oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Van Art, K. Batenburg, M. D. Rossell, et al., Nature Letter 470, 375 (2011).

    Google Scholar 

  2. E. W. Müller, J. A. Panitz and S. B. McLane, Review of Scientific Instruments 39, (1), 83 (1968).

    Article  Google Scholar 

  3. D. N. Seidman and K. Stiller, MRS Bulletin 34, 717 (2009).

    Article  Google Scholar 

  4. G. L. Kellogg and T. T. Tsong, Journal of Applied Physics 51, 1184 (1980).

    Article  CAS  Google Scholar 

  5. M. Tsukada, H. Tamura, K. P. McKenna, et al., Ultramicroscopy 111, 567 (2011).

    Article  CAS  Google Scholar 

  6. A. Vella, B. Mazumder, G. Da Costa, et al., Journal of Applied Physics 110, 044321 (2011).

    Article  Google Scholar 

  7. K. Hono, T. Ohkubo, Y. M. Chen, et al., Ultramicroscopy 111, 576 (2011).

    Article  CAS  Google Scholar 

  8. D. J. Larson, R. L. Alvis and D. F. Lawrence, Microscopy and Microanalysis 14, (suppl), 1254 (2008).

    Google Scholar 

  9. E. A. Marquis, N. A. Yahya, D. Larson, et al., Materials Today 13, 34 (2010).

    Article  CAS  Google Scholar 

  10. T. F. Kelly and M. K. Miller, Review of Scientific Instruments 78, 031101 (2007).

    Article  Google Scholar 

  11. J. Angenete and K. Stiller, Surface & Coatings Technology 150, 107 (2002).

    Article  CAS  Google Scholar 

  12. H. Götlind, F. Liu, J.-E. Svensson, M. Halvarsson and L.-G. Johansson, Oxidation of Metals 67, 251 (2007).

    Article  Google Scholar 

  13. H. Josefsson, F. Liu, J.-E. Svensson, et al., Materials and Corrosion 56, 801–805 (2005).

    Article  CAS  Google Scholar 

  14. F. Liu, H. Götlind, J.-E. Svensson, et al., Corrosion Science 50, 2272 (2008).

    Article  CAS  Google Scholar 

  15. F. Liu, H. Josefsson, J.-E. Svensson, et al., Materials at High Temperatures 22, 521 (2005).

    Article  CAS  Google Scholar 

  16. L. Viskari, PhD Thesis. Department of Applied Physics Chalmers, University of Technology 2011, ISBN: 978-91-7385-595-2.

  17. Y. M. Chen, T. Ohkubo and K. Hono, Ultramicroscopy 111, 562 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Stiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiller, K., Viskari, L., Sundell, G. et al. Atom Probe Tomography of Oxide Scales. Oxid Met 79, 227–238 (2013). https://doi.org/10.1007/s11085-012-9330-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9330-6

Keywords

Navigation