Skip to main content

Investigations for the Validation of the Defect Based Scale Failure Diagrams—Part I: Nickel Oxide


Mechanical stresses imposed on protective oxide scales can lead to cracking and failure of the scale and consequently to a loss of the protective properties. Therefore, an assessment of the mechanical stability limits is of great interest. In this work, a new concept using defect based oxide scale stability diagrams to assess the mechanical stability limits is discussed. In contrast to mechanical failure diagrams proposed earlier, the presented model is based on physical defect size instead of scale thickness. Nickel oxide scales on high purity (99.99 %) nickel were thermally grown in dry and humidified synthetic air to provide a model oxide system. SEM investigations were carried out to examine the physical defect structure in the oxide scales and mechanical 4-point bend testing was used to measure the critical strain for through scale cracking. The data served for establishing a data base for the validation of the defect based scale failure model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).

    Google Scholar 

  2. ChemSage V4 (GTT-Technologies, Herzogenrath, Germany)

  3. Thermo-Calc (Thermo-Calc Software, Stockholm, Sweden)

  4. J. Armitt, R. Holmes, M. I. Manning, D. B. Meadowcroft, and E. Metcalfe, The Spalling of Steam-Grown Oxide From Superheater and Reheater Tube Steels, EPRI report FP-686 (Electric Power Research Institute, Palo Alto, CA, USA, 1978).

    Google Scholar 

  5. H. E. Evans, G. P. Mitchell, R. C. Lobb, and D. R. J. Owen, Proceedings of the Royal Society of London A 440, 1 (1993).

    Article  CAS  Google Scholar 

  6. M. Schütze, Protective Oxide Scales and Their Breakdown (Wiley, Chichester, UK, 1997).

    Google Scholar 

  7. J. Robertson and M. I. Manning, Materials Science and Technology 6, 81 (1990).

    Article  CAS  Google Scholar 

  8. W. J. Quadakkers, D. Naumenko, L. Singheiser, H. J. Penkalla, A. K. Tyagi, and A. Czyrska-Filemonowicz, Materials and Corrosion 51, 350 (2000).

    Article  CAS  Google Scholar 

  9. M. Schulte, A. Rahmel, and M. Schütze, Oxidation of Metals 49, 33 (1998).

    Article  CAS  Google Scholar 

  10. M. Subanovic, P. Song, E. Wessel, R. Vassen, D. Naumenko, L. Singheiser, and W. J. Quadakkers, Surface and Coatings Technology 204, 820 (2009).

    Article  CAS  Google Scholar 

  11. M. Schütze, P. F. Tortorelli, and I. G. Wright, Oxidation of Metals 73, 389 (2010).

    Article  Google Scholar 

  12. M. Schütze and M. Rudolphi, Materials Science Forum 696, 138 (2011).

    Article  Google Scholar 

  13. A. A. Griffith, Philosophical Transactions of the Royal Society of London A 221, 163 (1921).

    Article  Google Scholar 

  14. P. Hancock and J. R. Nicholls, Materials Science and Technology 4, 398 (1988).

    Article  CAS  Google Scholar 

  15. I. Küppenbender and M. Schütze, Oxidation of Metals 42, 109 (1994).

    Google Scholar 

  16. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps (Pergamon Press, Oxford, UK, 1982).

    Google Scholar 

Download references


The financial support of the German Research Foundation (DFG) under project no. SCHU 729/21-1 is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Mario Rudolphi or Michael Schütze.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rudolphi, M., Schütze, M. Investigations for the Validation of the Defect Based Scale Failure Diagrams—Part I: Nickel Oxide. Oxid Met 79, 167–177 (2013).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: