Skip to main content
Log in

The Effect of Water Vapour on the Corrosion of Sandvik Sanergy HT Under Dual Atmosphere Conditions

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Interconnects of PCFC and SOFC are exposed to dual atmosphere conditions; fuel (e.g. H2) on the anode side and air on the cathode side. Sandvik Sanergy HT has been investigated under simulated fuel cell conditions at high temperatures. The microstructure and composition of the oxide scales formed at the cathode side (air) were significantly influenced by dual atmosphere conditions. The main effect was a substantial increase of Fe in the oxide scales by the formation of Fe rich nodules accompanied by localized metal loss. The size and number of the nodules increased when introducing water vapour on the air side of the samples. It is suggested that the preferred localization of nodule formation is given by the surface finish as a result of fabrication (e.g. grooves and scratches). By increasing the reaction temperature or duration of the exposures, the effect of dual atmosphere conditions became less pronounced. Alterations to the oxidation mechanism as a consequence of dual atmosphere environments are discussed with basis in the effect of hydrogen permeation through the interconnect alloy. Samples PVD coated with a double layer of metallic Ce and Co were also tested under single and dual atmosphere conditions. No significant change was found in the oxidation behaviour by dual atmosphere exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. W. Fergus, Materials Science and Engineering A 397, 271 (2005).

    Article  Google Scholar 

  2. Y. Zhenguo, M. S. Walker, P. Singh, J. W. Stevenson and T. Norby, Journal of the Electrochemical Society 151, B669 (2004).

    Article  Google Scholar 

  3. Z. Yang, G. Xia, P. Singh and J. W. Stevenson, Solid State Ionics 176, 1495 (2005).

    Article  CAS  Google Scholar 

  4. Z. Yang, G.-G. Xia, M. S. Walker, C.-M. Wang, J. W. Stevenson and P. Singh, International Journal of Hydrogen Energy 32, 3770 (2007).

    Article  CAS  Google Scholar 

  5. G. Holcomb, M. Ziomek-Moroz, S. Cramer, B. Covino and S. Bullard, Journal of Materials Engineering and Performance 15, 404 (2006).

    Article  CAS  Google Scholar 

  6. J. Rufner, P. Gannon, P. White, M. Deibert, S. Teintze, R. Smith and H. Chen, International Journal of Hydrogen Energy 33, 1392 (2008).

    Article  CAS  Google Scholar 

  7. S. K. Yen and Y. C. Tsai, Journal of the Electrochemical Society 143, 2736 (1996).

    Article  CAS  Google Scholar 

  8. J. W. Fergus, Y. Zhao, R. Haney, K. Cramer and L. Riherd, ECS Transactions 25, 101 (2010).

    Article  CAS  Google Scholar 

  9. P. Kofstad, Oxidation of Metals 44, 3 (1995).

    Article  CAS  Google Scholar 

  10. B. Tveten, G. Hultquist and T. Norby, Oxidation of Metals 51, 221 (1999).

    Article  CAS  Google Scholar 

  11. K. Nakagawa, Y. Matsunaga and T. Yanagisawa, Materials at High Temperatures 20, 67 (2003).

    Article  CAS  Google Scholar 

  12. H. Kurokawa, Y. Oyama, K. Kawamura and T. Maruyama, Proceedings of the Electrochemical Society 16, 170 (2003).

    Google Scholar 

  13. A. W. Bredvei Skilbred and R. Haugsrud, International Journal of Hydrogen Energy 37, 8095 (2012).

    Article  CAS  Google Scholar 

  14. P. E. Gannon and P. T. White, ECS Transactions 16, 53 (2009).

    Article  CAS  Google Scholar 

  15. J. Froitzheim and J. E. Svensson, ECS Transactions 35, 2503 (2011).

    Article  CAS  Google Scholar 

  16. J. Froitzheim and J. E. Svensson, Materials Science Forum 696, 412 (2011).

    Article  CAS  Google Scholar 

  17. H. T. Sanergy, Material Data Sheet, Sandvik Materials Technology (2009).

  18. M. Ziomek-Moroz, B. D. Covino, Jr., S. D. Cramer, G. R. Holcomb, S. J. Bullard, P. Singh, C. F. Windisch, Jr., in 29th International Technical Conference on Coal Utilization & Fuel Systems; Coal Technology Association. 2004, 2, 1121.

  19. K. Huang, P. Y. Hou and J. B. Goodenough, Solid State Ionics 129, 237 (2000).

    Article  CAS  Google Scholar 

  20. A. W. B. Skilbred and R. Haugsrud, Journal of Power Sources 206, 70 (2012).

    Article  CAS  Google Scholar 

  21. T. Brylewski, J. Dąbek and K. Przybylski, Journal of Thermal Analysis and Calorimetry 77, 207 (2004).

    Article  CAS  Google Scholar 

  22. A. M. Huntz, A. Reckmann, C. Haut, C. Sévérac, M. Herbst, F. C. T. Resende and A. C. S. Sabioni, Materials Science and Engineering A 447, 266 (2007).

    Article  Google Scholar 

  23. T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M. E. Brito and H. Yokokawa, Journal of Power Sources 176, 54 (2008).

    Article  CAS  Google Scholar 

  24. H. Kurokawa, K. Kawamura and T. Maruyama, Solid State Ionics 168, 13 (2004).

    Article  CAS  Google Scholar 

  25. S. J. Geng, J. H. Zhu and Z. G. Lu, Electrochemical and Solid-State Letters 9, A211 (2006).

    Article  CAS  Google Scholar 

  26. A. C. S. Sabioni, A.-M. Huntz, E. C. da Luz, M. Mantel, and C. Haut, Materials Research 6 (2003).

  27. S. K. Yen and Y. C. Taai, Jounal of the Electrochemical Society 143, 2736 (1996).

    Article  CAS  Google Scholar 

  28. A. Yamauchi, Y. Yamauchi, Y. Hirohata, T. Hino and K. Kurokawa, Materials Science Forum 522–523, 163 (2006).

    Article  Google Scholar 

  29. P. Kofstad, High Temperature Corrosion, 1st edn. (Elsevier Applied Science, 1988).

  30. H. Asteman, J. E. Svensson, M. Norell and L. G. Johansson, Oxidation of Metals 54, 11 (2000).

    Article  CAS  Google Scholar 

  31. E. Essuman, G. H. Meier, J. Zurek, M. Haensel and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).

    Article  CAS  Google Scholar 

  32. E. Essuman, G. H. Meier, J. Zurek, M. Haensel, L. Singheiser and W. J. Quadakkers, Mater. Sci. Forum 595–598, 699 (2008).

    Article  Google Scholar 

  33. S. Fontana, S. Chevalier and G. Caboche, Journal of Power Sources 193, 136 (2009).

    Article  CAS  Google Scholar 

  34. T. Norby, Journal of Physics IV 3, 99 (1993).

    CAS  Google Scholar 

  35. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).

    Article  CAS  Google Scholar 

  36. J. Gilewicz-Wolter, J. Dudała, Z. Żurek, M. Homa, J. Lis and M. Wolter, Journal of Phase Equilibria and Diffusion 26, 561 (2005).

    CAS  Google Scholar 

  37. A. Huntz, Journal of Materials Science Letters 13, 821 (1994).

    Article  CAS  Google Scholar 

  38. C. Piehl, Z. Tokei and H. J. Grabke, Materials Science Forum 369–372, 319 (2001).

    Article  Google Scholar 

  39. H. J. Grabke, E. M. Muller-Lorenz, S. Strauss, E. Pippel and J. Woltersdorf, Oxidation of Metals 50, 241 (1998).

    Article  CAS  Google Scholar 

  40. G. H. Meier, W. C. Coons and R. A. Perkins, Oxidation of Metals 17, 235 (1982).

    Article  CAS  Google Scholar 

  41. S. Leistikow, I. Wolf and H. J. Grabke, Werkst. Korros. 38, 556 (1987).

    Article  CAS  Google Scholar 

  42. R. L. Higginson and G. Green, Corrosion Science 53, 1690 (2011).

    Article  CAS  Google Scholar 

  43. J. Zurek, G. H. Meier, E. Essuman, M. Hänsel, L. Singheiser and W. J. Quadakkers, Journal of Alloys and Compounds 467, 450 (2009).

    Article  CAS  Google Scholar 

  44. P. Huczkowski, V. Shemet, J. Piron-Abellan, L. Singheiser, W. J. Quadakkers and N. Christiansen, Materials and Corrosion 55, 825 (2004).

    Article  CAS  Google Scholar 

  45. W. J. Quadakkers, P. Huczkowski, D. Naumenko, J. Zurek, G. H. Meier, L. Niewolak and L. Singheiser, Materials Science Forum 595–598, 1111 (2008).

    Article  Google Scholar 

  46. R. Guillamet, M. Lenglet, L. Gazin, B. Hannoyer and J. Lopitaux, Surface and Interface Analysis 20, 15 (1993).

    Article  CAS  Google Scholar 

  47. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sandvik Materials Technology is acknowledged for providing samples. This work is supported by the RENERGI project 185322 “Stack Technology for Ceramic Proton Conductors (StackPro)” of the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reidar Haugsrud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skilbred, A.W.B., Haugsrud, R. The Effect of Water Vapour on the Corrosion of Sandvik Sanergy HT Under Dual Atmosphere Conditions. Oxid Met 79, 639–654 (2013). https://doi.org/10.1007/s11085-012-9313-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9313-7

Keywords

Navigation