Skip to main content
Log in

The Effects of Molybdenum Addition on High Temperature Oxidation Behavior at 1,000 °C of Type 444 Ferritic Stainless Steel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The influence of molybdenum addition on the oxidation behavior of ferritic stainless steel (FSS) was studied at 1,000 °C up to 100 h in air under isothermal conditions. The results were compared with molybdenum-free FSS in order to explain the role of molybdenum on the oxidation of Type 444 FSS. It is shown that molybdenum plays a similar protective role as the one observed with silicon by promoting the precipitation of Laves phase. Moreover, the Fe2(Nb, Mo) Laves phases with a small amount of silicon are found nearby the oxide–metal interface and deep in the metallic matrix along the grain boundaries. These highly protective Laves phases hinder the external diffusion of iron, chromium, and manganese cations from the matrix and prevent the internal diffusion of oxygen which leads to the lower oxidation rate and the better scale adherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. M. Huntz, A. Reckmann, C. Haut, et al., Materials Science Engineering A 447, 266 (2007).

    Article  Google Scholar 

  2. N. Fujita, K. Ohmura, and A. Yamamoto, Materials Science Engineering A 351, 272 (2003).

    Article  Google Scholar 

  3. S. K. Mukherjee and G. S. Upadhyaya, Oxidation of Metals 23, 177 (1985).

    Article  CAS  Google Scholar 

  4. N. Fujita, K. Ohmura, M. Kikuchi, et al., Scripta Materialia 35, 705 (1996).

    Article  CAS  Google Scholar 

  5. S. K. Samanta, S. K. Mitra, and T. K. Pal, Materials Science Engineering A 430, 242 (2006).

    Article  Google Scholar 

  6. V. Kuzucu, M. Aksoy, and M. H. Korkut, Journal of Materials Processing Technology 82, 165 (1998).

    Article  Google Scholar 

  7. H. T. Yan, H. Y. Bi, X. Li, et al., Materials Characterization 60, 204 (2009).

    Article  CAS  Google Scholar 

  8. N. Fujita, H. Bhadeshia, and M. Kikuchi, Metallurgical and Materials Transactions A 33, 3339 (2002).

    Article  Google Scholar 

  9. E. El-kashif, K. Asakura, T. Koseki, et al., ISIJ International 44, 1568 (2004).

    Article  CAS  Google Scholar 

  10. N. Fujita, K. Ohmura, and M. Kikuchi, Scripta Materialia 35, 705 (1996).

    Article  CAS  Google Scholar 

  11. M. Aksoy, V. Kuzucu, and M. H. Korkut, Journal of Materials Processing Technology 91, 172 (1999).

    Article  Google Scholar 

  12. J. Rassizadehghani, H. Najafiy, and M. Emamy, Journal of Materials Science Technology 23, 779 (2007).

    CAS  Google Scholar 

  13. A. Aghajani, F. Richter, C. Somsen, et al., Scripta Materialia 61, 1068 (2009).

    Article  CAS  Google Scholar 

  14. A. Aghajani, Ch Somsen, and G. Eggeler, Acta Materialia 57, 5093 (2009).

    Article  CAS  Google Scholar 

  15. G. V. Raynor and V. J. Rivlin, Phase Equilibria in Iron Ternary Alloys (The Institute of Metals, London, 1988).

  16. J. S. Dunning, D. E. Alman, and J. C. Rawers, Oxidation of Metals 57, 409 (2002).

    Article  CAS  Google Scholar 

  17. F. Velasco, A. Bautista, and A. González-Centeno, Corrosion Science 51, 21 (2009).

    Article  CAS  Google Scholar 

  18. H. E. Evans, D. A. Hilton, R. A. Holm, et al., Oxidation of Metals 19, 1 (1983).

    Article  CAS  Google Scholar 

  19. F. J. Pérez, E. Otero, and M. P. Hierro, Surface Coatings and Technology 108–109, 127 (1998).

    Article  Google Scholar 

  20. A. Paul, P. Sanchez, O. M. Montes, et al., Oxidation of Metals 67, 87 (2007).

    Article  CAS  Google Scholar 

  21. F. J. Pérez, M. J. Cristobal, M. P. Hierro, et al., Surface Coatings and Technology 120–121, 442 (1999).

    Article  Google Scholar 

  22. T. Oshima, T. Y. Habara, and K. Kuroda, Materials Science Forum 539–543, 4897 (2007).

    Article  Google Scholar 

  23. A. Paúl, S. Elmrabet, L. C. Alves, et al., Nuclear Instrument and Methods B 181, 394 (2001).

    Article  Google Scholar 

  24. R. Pettersson, L. Liu, and J. Sund, Corrosion Engineering, Science and Technology 40, 211 (2005).

    Article  Google Scholar 

  25. F. Riffard, H. Buscail, E. Caudron, et al., Materials Characterization 49, 55 (2002).

    Article  CAS  Google Scholar 

  26. G. Bamba, Y. Wouters, A. Galerie, et al., Acta Materialia 54, 3917 (2006).

    Article  CAS  Google Scholar 

  27. X. de Buchere, P. Andreazza, C. Andreazza-Vignolle, et al., Surface Coatings and Technology 80, 49 (1996).

    Article  Google Scholar 

  28. H. S. Isaacs and S. M. Huangs, Journal of the Electrochemical Society 143, L277 (1996).

    Article  CAS  Google Scholar 

  29. I. F. Mahando and A. F. Padilha, Acta Microscópica 12, 111 (2003).

    Google Scholar 

  30. N. Birks and G. H. Meier (Edward Arnold, London, 1983).

  31. V. S. Dheeradhada, H. B. Cao, and M. J. Alinger, Journal of Power Sources 196, 1975 (2011).

    Article  CAS  Google Scholar 

  32. J. Rufner, P. Gannon, P. White, et al., International Journal of Hydrogen Energy 33, 1392 (2008).

    Article  CAS  Google Scholar 

  33. X, Wang, L. F. Wang, M. L. Zhu et al., Transactions of Nonferrous Metals Society of China 16, 2006 (s676).

    Google Scholar 

  34. H. Buscail, S. EI Messki, F. Riffard, et al., Materials Chemistry and Physics 111, 497 (2008).

    Article  Google Scholar 

  35. Y. P. Jacob, V. A. C. Haanappel, M. F. Stroosnijder, et al., Corrosion Science 44, 2027 (2002).

    Article  CAS  Google Scholar 

  36. H. T. Daniel et al., J.I.S.I. 201, 1963 (154).

  37. T. C. Chou and T. G. Nieh, Scripta Metallurgica et Materialia 26, 19 (1992).

    Article  Google Scholar 

  38. Benedict I. Portillo, and S. K. Varma, Journal of Alloys and Compounds 497, 68 (2010).

    Article  CAS  Google Scholar 

  39. T. C. Chou, and T. G. Nieh, Scripta Metallurgica et Materialia 27, 1637 (1992).

    Article  Google Scholar 

  40. K. Yanagihara, K. Przybylski, and T. Mauryama, Oxidation of Metals 47, 277 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank J.Q. Gao and W. F. Zhao for helpful experiments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyun Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, J., Bi, H., Li, X. et al. The Effects of Molybdenum Addition on High Temperature Oxidation Behavior at 1,000 °C of Type 444 Ferritic Stainless Steel. Oxid Met 78, 253–267 (2012). https://doi.org/10.1007/s11085-012-9304-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9304-8

Keywords

Navigation