Skip to main content
Log in

An Evaluation of the Use of X-ray Residual Stress Determination as a Means of Characterizing Oxidation Damage of Nickel-Based, Cr2O3-Forming Superalloys Subjected to Various Oxidizing Conditions

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The use of X-ray residual stress determination as a technique for evaluating the damage incurred by nickel-based, Cr2O3-forming superalloy materials under various service conditions (isothermal heating, thermal cycling, applied stress, stressed and cycled) was investigated. Large and small compressive residual stresses were observed for the oxides and the near surface substrates, respectively. It was expected that the applied stresses and thermal cycling would cause an enhanced degree of oxidation damage that would translate into appreciable differences in residual stress values. Differences in the magnitude of residual stress values were not appreciable condition-to-condition, however. An increase in the severity of the oxidizing conditions in the form of longer oxidation times, higher oxidizing temperatures, and a much greater frequency of thermal cycling is suggested for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Materials Data, Inc., (MDI), Livermore, California 94550.

References

  1. J. H. Chen, P. M. Rogers, and J. A. Little, Oxidation of Metals 47, 381 (1997).

    Article  CAS  Google Scholar 

  2. W. Z. Friend, Corrosion of Nickel and Nickel-Base Alloys, (John Wiley and Sons, New York, 1980), p. 166.

    Google Scholar 

  3. N. Hussain, K. A. Shalid, I. H. Khan, and S. Rahman, Oxidation of Metals 43, 363 (1995).

    Article  CAS  Google Scholar 

  4. F. A. Khalid and S. E. Benjamin, Oxidation of Metals 54, 63 (2000).

    Article  CAS  Google Scholar 

  5. S.-B. Kim, A. Evans, J. Shackleton, G. Bruno, M. Preuss, and P. J. Withers, Metallurgical and Materials Transactions A 36A, 3041 (2005).

    Article  CAS  ADS  Google Scholar 

  6. H. J. Grabke, R. Dennert, and B. Wagemann, Oxidation of Metals 47, 495 (1997).

    Article  CAS  Google Scholar 

  7. H. E. Evans, International Materials Reviews 40, 1 (1995).

    CAS  Google Scholar 

  8. B. Gleeson and M. A. Harper, Oxidation of Metals 49, 373 (1998).

    Article  CAS  Google Scholar 

  9. H. Buscail, Y. P. Jacob, M. F. Stroosnijder, E. Caudron, R. Cueff, F. Rabaste, and S. Perrier, Materials Science Forum 461–464, 93 (2004).

    Article  Google Scholar 

  10. D. J. Srolovitz and T. A. Ramanarayanan, Oxidation of Metals 22, 133 (1984).

    Article  CAS  Google Scholar 

  11. P. Pagliaro, M. B. Prime, B. Zuccarello, B. Clausen, and T. R. Watkins, in Experimental Analysis of Nano and Engineering Materials and Structures: Proceedings of the 13th International Conference on Experimental Mechanics (ICEM13), Alexandroupolis, Greece, July 1–6, 2007, paper no. 246, CD-ROM. eds. by E. E. Gdoutos (Springer, 2007).

  12. S. J. Bull, Oxidation of Metals 49, 1 (1998).

    Article  CAS  Google Scholar 

  13. M. Khadhraoui, W. Cao, L. Castex, and J. Y. Guedo, Materials Science and Technology 13, 360 (1997).

    CAS  Google Scholar 

  14. W. Cao, M. Khadhraoui, B. Brenier, J. Y. Guedo, and L. Castex, Materials Science and Technology 10, 947 (1994).

    CAS  Google Scholar 

  15. D. L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood (eds.), Subject Area 8: Behavior of Scales Under Mechanical Loading (Oxidation of Metals, 45, 529, 1996).

  16. A. Rahmel, G. C. Wood, P. Kofstad, and D. L. Douglass (eds.) Subject Area 9: Interaction Between Oxidation (Sulfidation, Carburization) and Creep (Oxidation of Metals, 23, 251, 1985).

  17. G. Calvarin-Amiri, R. Molins, and A. M. Huntz, Oxidation of Metals 54, 399 (2000).

    Article  Google Scholar 

  18. A. Schnass and H. J. Grabke, Oxidation of Metals 12, 387 (1978).

    Article  Google Scholar 

  19. C. Mathieu and S. Toesca, Oxidation of Metals 39, 155 (1993).

    Article  CAS  Google Scholar 

  20. D. Poquillon and D. Monceau, Oxidation of Metals 59, 409 (2003).

    Article  CAS  Google Scholar 

  21. Haynes Website, www.haynesintl.com.

  22. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd edn. (Butterworth and Co. Ltd., London, 1962), p. 35.

  23. B. Pieraggi, Oxidation of Metals 27, 177 (1987).

    Article  CAS  Google Scholar 

  24. H. Krause and A. Haase, in Experimental Techniques of Texture Analysis, ed. H. J. Bunge (DGM Informationsgesellschaft Verlag, Oberursel, 1986), p. 405.

  25. I. C. Noyan and J. B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation (Springer-Verlag, New York, 1987).

  26. T. R. Watkins, O. B. Cavin, J. Bai, and J. A. Chediak, in Advances in X-Ray Analysis, Vol. 46 CD ROM, eds. T. C. Huang et al. (ICDD, Newtown Square, PA, 2003), p. 119.

  27. P. Rudnik and J. B. Cohen, in Advances in X-Ray Analysis, eds. J. B. Cohen et al., Vol. 29 (Plenum Press, NY, 1985), p. 79.

  28. P. F. Tortorelli, Journal de Physique IV 3, 943 (1993).

    CAS  Google Scholar 

  29. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals (Edward Arnold (Publishers) Ltd., London, 1983), pp. 108, 118.

  30. J. G. Goedjen, J. H. Stout, Q. Guo, and D. A. Shores, Materials Science and Engineering A177, 115 (1994).

    Google Scholar 

  31. Y. Zhang and D. A. Shores, Oxidation of Metals 40, 529 (1993).

    Article  CAS  Google Scholar 

  32. Y. Zhang, W. W. Gerberich, and D. A. Shores, Journal of Materials Research 12, 697 (1997).

    Article  ADS  Google Scholar 

  33. A. M. Huntz, Materials Science and Engineering A201, 211 (1994).

    Google Scholar 

  34. M. Kemdehoundja, J. F. Dinhut, J. L. Grosseau-Poussard, and M. Jeannin, Materials Science and Engineering A 435–436, 666 (2006).

    Article  Google Scholar 

  35. D. Zhu, J. H. Stout, and D. A. Shores, Materials Science Forum 251–254, 333 (1997).

    Article  Google Scholar 

  36. S. Daghigh, J. L. Lebrun, and A. M. Huntz, Materials Science Forum 251–254, 381 (1997).

    Article  Google Scholar 

  37. A. M. Huntz, S. Daghigh, A. Piant, and J. L. Lebrun, Materials Science and Engineering A248, 44 (1998).

    CAS  Google Scholar 

  38. P. Y. Hou, A. P. Paulikas, and B. W. Veal, Materials Science Forum 461–464, 671 (2004).

    Article  Google Scholar 

  39. B. W. Veal, A. P. Paulikas, B. Gleeson, and P. Y. Hou, Surface & Coatings Technology 202, 608 (2007).

    Article  CAS  Google Scholar 

  40. B. W. Veal, A. P. Paulikas, and P. Y. Hou, Applied Physics Letters 90, 121914-1–121914-3 (2007).

  41. A. V. Virkar, J. L. Huang, and R. A. Cutler, Journal of the American Ceramic Society 70, 164 (1987).

    Article  CAS  Google Scholar 

  42. J. F. Schmitt, N. Pacia, P. Pigeat, and B. Weber, Oxidation of Metals 44, 429 (1995).

    Article  CAS  Google Scholar 

  43. B. R. Barnard, M. S. Thesis, University of Tennessee, Knoxville, USA (2008).

  44. B. R. Barnard, P. K. Liaw, R. A. Buchanan, and D. L. Klarstrom, Materials Science and Engineering A 527, 3813 (2010).

    Article  Google Scholar 

  45. B. D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company, Inc., Reading, 1978), pp. 132, 292.

Download references

Acknowledgements

The samples were provided by Dr. D. L. Klarstrom of Haynes International, Inc., Kokomo, IN. The authors appreciate the advice and aid of Drs. P. Tortorelli, B. Pint, E. Lara-Curzio, W. Ren, R. Swindeman, W. Kai, Y. Lu, M. Morrison, W. H. Peter, R. Steward, M. Benson, B. Green, M. Freels, and R. A. Buchanan. The author is grateful for the help and advice of Mr. M. Neal, Mr. G. Jones, Mr. F. Holiway, Mr. R. Stookesbury, Mr. S. White, Mr. K. Johanns, Mr. J. Shingledecker, Mr. C. Stephens, Mr. K. Kubushiro, Mr. R. Mcdaniels, Mr. A. Chuang, Ms. S. Maples, Ms. C. Lawrence, Ms. C. Winn, Ms. R. Cook, Mr. D. Fielden, and the University of Tennessee machine shop. The authors gratefully acknowledge the financial support from the National Science Foundation (NSF), the Integrative Graduate Education and Research Training (IGERT) Program, under DGE-9987548, DMR-0909037, and CMMI-0900271 to the University of Tennessee (UT), Knoxville, with Drs. C. J. Van Hartesveldt, J. D. Giordan, D. Dutta, L. Clesceri, W. Jennings, L. Goldberg, A. Ardell, and C. V. Cooper as contract monitors, respectively. Portions of this research were conducted at the Oak Ridge National Laboratory’s High Temperature Materials Laboratory User Program sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Portions of this research were sponsored by the Industrial Technologies Program, Industrial Materials for the Future Program, Materials Processing Laboratory Users Project, Oak Ridge National Laboratory. Both programs are managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract number DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Barnard.

Additional information

Disclaimer

This document was prepared by Bryan Barnard as a result of the use of facilities of the U. S. Department of Energy (DOE) that are managed by UT-BATTELLE, LLC. Neither UT-BATTELLE, LLC, DOE, or the U. S. government, nor any person acting on their behalf: (a) makes any warranty or representation, express or implied, with respect to the information contained in this document; or (b) assumes any liabilities with respect to the use of, or damages resulting from the use of, any information contained in the document.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnard, B.R., Watkins, T.R. & Liaw, P.K. An Evaluation of the Use of X-ray Residual Stress Determination as a Means of Characterizing Oxidation Damage of Nickel-Based, Cr2O3-Forming Superalloys Subjected to Various Oxidizing Conditions. Oxid Met 74, 305–318 (2010). https://doi.org/10.1007/s11085-010-9214-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9214-6

Keywords

Navigation