Abstract
The oxidation of iron has been studied at low temperatures (between 260 and 500 °C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 °C allowed to propose a growth mechanism of the scale.
Similar content being viewed by others
References
M. Butez, G. Bordier, X. Vitart, and I. Hablot, Clefs CEA (CEA Publications, France, 2005) 53, 26 (2005).
R. J. Hussey, G. I. Sproule, D. Caplan, and M. J. Graham, Oxidation of Metals 11, 65 (1977).
R. Dieckmann and H. Schmalzried, Berichte der Bunsen-Gesellschaft 81, 344 (1977).
R. Dieckmann and H. Schmalzried, Berichte der Bunsen-Gesellschaft 81, 414 (1977).
A. Atkinson, M. L. O’Dwyer, and R. I. Taylor, Journal of Materials Science 18, 2371 (1983).
H. Sakai, T. Tsuji, and K. Naito, Journal of Nuclear Science and Technology 21, 844 (1984).
R. Lindner, Arkiv for Kemi 4, 381 (1952).
A. G. Goursat and W. W. Smeltzer, Oxidation of Metals 6, 101 (1973).
D. A. Channing and M. J. Graham, Corrosion Science 12, 271 (1972).
N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals (Edward Arnold Ltd., 1983), p. 198.
D. Caplan and M. Cohen, Corrosion Science 3, 139 (1963).
W. E. Boggs, R. H. Kachik, and G. E. Pellissier, Journal of the Electrochemical Society 112, 539 (1965).
L. Himmel, R. F. Mehl, and C. E. Birchenall, Transaction of American Institute of Mining and Metallurgical Engineers 197, 827 (1953).
M. H. Davies, M. T. Simnad, and C. E. Birchenall, JOM-Journal of Minerals Metals & Materials Society 3, 889 (1951).
M. H. Davies, M. T. Simnad, and C. E. Birchenall, Transaction of American Institute of Mining and Metallurgical Engineers 197, 1250 (1953).
R. Francis and D. G. Lees, Corrosion Science 16, 847 (1976).
R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).
D. Caplan and M. J. Cohen, Corrosion Science 6, 321 (1966).
D. Caplan, M. J. Graham, and M. Cohen, Corrosion Science 10, 1 (1970).
R. F. Tylecote and T. E. Mitchell, Journal of the Iron and Steel Institute 196, 445 (1960).
A. Atkinson, Reviews of Modern Physics 57, 437 (1985).
A. Goswami, Indian Journal of Chemistry 3, 385 (1965).
D. E. Davies, U. R. Evans, and J. N. Agar, Proceedings of the Royal Society of London Series A 225, 443 (1954).
C. Wagner, Corrosion Science 9, 91(1969).
C. Desgranges, K. Abbas, and A. Terlain, Prediction of Long Term Corrosion Behavior in Nuclear Waste Systems (European Federation of Corrosion 36, 2003), p. 194.
A. Atkinson, R. I. Taylor, and A. E. Hughes, Philosophical Magazine A 45, 823 (1982).
C. Wagner, Corrosion Science 10, 641 (1970).
M. L. Zheludkevich, A. G. Gusakov, A. G. Voropaev, A. A. Vecher, K. A. Yasakau, and M. G. S. Ferreira, Oxidation of Metals 62, 223 (2004).
A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum 369–382, 231 (2001).
D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).
D. Caplan, G. I. Sproule, and R. J. Hussey, Corrosion Science 10, 9 (1970).
D. Caplan, R. J. Hussey, G. I. Sproule, and M. J. Graham, Corrosion Science 21, 689 (1981).
S. Taniguchi and D. L. Carpenter, Corrosion Science 19, 15 (1979).
H. Sakai, T. Tsuji, and K. Naito, Journal of Nuclear Science and Technology 22, 158 (1985).
M. J. Graham, S. I. Ali, and M. Cohen, Journal of the Electrochemical Society 117, 513 (1970).
M. J. Graham and R. J. Hussey, Oxidation of Metals 15, 407 (1981).
R. J. Hussey, D. Caplan, and M. J. Graham, Oxidation of Metals 15, 421 (1981).
N. Bertrand, PhD thesis, Institut National Polytechnique de Toulouse, France (2006).
N. Bertrand, C. Desgranges, D. Gauvain, D. Monceau, and D. Poquillon, Materials Science Forum 461–464, 591 (2004).
D. A. Voss, E. P. Butler, and T. E. Mitchell, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 13, 929 (1982).
G. M. Raynaud and R. A. Rapp, Oxidation of Metals 21, 89 (1984).
M. Hänsel, W. J. Quadakkers, and D. J. Young, Oxidation of Metals 59, 285 (2003).
R. Peraldi, D. Monceau, and B. Pieraggi, Oxidation of Metals 58, 249 (2002).
S. N. Basu and J. W. Halloran, Oxidation of Metals 27, 143 (1987).
A. Atkinson and R. I. Taylor, High Temperatures-High Pressures 14, 571 (1982).
J. E. Castle and P. L. Surman, Journal of Physical Chemistry-US 71, 4255 (1967).
A. G. Crouch and J. Robertson, Acta Metallurgica et Materialia 38, 2567 (1990).
S. Mrowec, Corrosion Science 7, 563 (1967).
T. Maruyama, N. Fukagai, M. Ueda, and K. Kawamura, Materials Science Forum 461–464, 807 (2004).
C. Desgranges, N. Bertrand, K. Abbas, D. Monceau, and D. Poquillon, Materials Science Forum 461–464, 481 (2004).
Acknowledgments
The authors gratefully acknowledge Claude Armand (INSA Toulouse) for SIMS Analysis, Patrick Bonaillie and Sylvie Poissonnet (CEA) for SEM observations, Rikke Ollemann (HKL Technology) and Daniel Galy (Synergie4) for EBSD analysis, Fabrice Legendre and Sébastien Cabessut (CEA) for 16O2/18O2 oxidation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bertrand, N., Desgranges, C., Poquillon, D. et al. Iron Oxidation at Low Temperature (260–500 °C) in Air and the Effect of Water Vapor. Oxid Met 73, 139–162 (2010). https://doi.org/10.1007/s11085-009-9171-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11085-009-9171-0