Skip to main content

Advertisement

Log in

Iron Oxidation at Low Temperature (260–500 °C) in Air and the Effect of Water Vapor

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of iron has been studied at low temperatures (between 260 and 500 °C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 °C allowed to propose a growth mechanism of the scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Butez, G. Bordier, X. Vitart, and I. Hablot, Clefs CEA (CEA Publications, France, 2005) 53, 26 (2005).

  2. R. J. Hussey, G. I. Sproule, D. Caplan, and M. J. Graham, Oxidation of Metals 11, 65 (1977).

    Article  CAS  Google Scholar 

  3. R. Dieckmann and H. Schmalzried, Berichte der Bunsen-Gesellschaft 81, 344 (1977).

    CAS  Google Scholar 

  4. R. Dieckmann and H. Schmalzried, Berichte der Bunsen-Gesellschaft 81, 414 (1977).

    CAS  Google Scholar 

  5. A. Atkinson, M. L. O’Dwyer, and R. I. Taylor, Journal of Materials Science 18, 2371 (1983).

    Article  CAS  ADS  Google Scholar 

  6. H. Sakai, T. Tsuji, and K. Naito, Journal of Nuclear Science and Technology 21, 844 (1984).

    Article  CAS  Google Scholar 

  7. R. Lindner, Arkiv for Kemi 4, 381 (1952).

    CAS  Google Scholar 

  8. A. G. Goursat and W. W. Smeltzer, Oxidation of Metals 6, 101 (1973).

    Article  CAS  Google Scholar 

  9. D. A. Channing and M. J. Graham, Corrosion Science 12, 271 (1972).

    Article  CAS  Google Scholar 

  10. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals (Edward Arnold Ltd., 1983), p. 198.

  11. D. Caplan and M. Cohen, Corrosion Science 3, 139 (1963).

    Article  CAS  Google Scholar 

  12. W. E. Boggs, R. H. Kachik, and G. E. Pellissier, Journal of the Electrochemical Society 112, 539 (1965).

    Article  CAS  Google Scholar 

  13. L. Himmel, R. F. Mehl, and C. E. Birchenall, Transaction of American Institute of Mining and Metallurgical Engineers 197, 827 (1953).

    Google Scholar 

  14. M. H. Davies, M. T. Simnad, and C. E. Birchenall, JOM-Journal of Minerals Metals & Materials Society 3, 889 (1951).

    CAS  Google Scholar 

  15. M. H. Davies, M. T. Simnad, and C. E. Birchenall, Transaction of American Institute of Mining and Metallurgical Engineers 197, 1250 (1953).

    Google Scholar 

  16. R. Francis and D. G. Lees, Corrosion Science 16, 847 (1976).

    CAS  Google Scholar 

  17. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).

    Article  CAS  Google Scholar 

  18. D. Caplan and M. J. Cohen, Corrosion Science 6, 321 (1966).

    Article  CAS  Google Scholar 

  19. D. Caplan, M. J. Graham, and M. Cohen, Corrosion Science 10, 1 (1970).

    Article  CAS  Google Scholar 

  20. R. F. Tylecote and T. E. Mitchell, Journal of the Iron and Steel Institute 196, 445 (1960).

    CAS  Google Scholar 

  21. A. Atkinson, Reviews of Modern Physics 57, 437 (1985).

    Article  CAS  ADS  Google Scholar 

  22. A. Goswami, Indian Journal of Chemistry 3, 385 (1965).

    CAS  Google Scholar 

  23. D. E. Davies, U. R. Evans, and J. N. Agar, Proceedings of the Royal Society of London Series A 225, 443 (1954).

    Article  CAS  ADS  Google Scholar 

  24. C. Wagner, Corrosion Science 9, 91(1969).

    Article  CAS  Google Scholar 

  25. C. Desgranges, K. Abbas, and A. Terlain, Prediction of Long Term Corrosion Behavior in Nuclear Waste Systems (European Federation of Corrosion 36, 2003), p. 194.

  26. A. Atkinson, R. I. Taylor, and A. E. Hughes, Philosophical Magazine A 45, 823 (1982).

    Article  CAS  ADS  Google Scholar 

  27. C. Wagner, Corrosion Science 10, 641 (1970).

    Article  CAS  Google Scholar 

  28. M. L. Zheludkevich, A. G. Gusakov, A. G. Voropaev, A. A. Vecher, K. A. Yasakau, and M. G. S. Ferreira, Oxidation of Metals 62, 223 (2004).

    Article  CAS  Google Scholar 

  29. A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum 369–382, 231 (2001).

    Article  Google Scholar 

  30. D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).

    Article  CAS  Google Scholar 

  31. D. Caplan, G. I. Sproule, and R. J. Hussey, Corrosion Science 10, 9 (1970).

    Article  CAS  Google Scholar 

  32. D. Caplan, R. J. Hussey, G. I. Sproule, and M. J. Graham, Corrosion Science 21, 689 (1981).

    Article  CAS  Google Scholar 

  33. S. Taniguchi and D. L. Carpenter, Corrosion Science 19, 15 (1979).

    Article  CAS  Google Scholar 

  34. H. Sakai, T. Tsuji, and K. Naito, Journal of Nuclear Science and Technology 22, 158 (1985).

    Article  CAS  Google Scholar 

  35. M. J. Graham, S. I. Ali, and M. Cohen, Journal of the Electrochemical Society 117, 513 (1970).

    Article  CAS  Google Scholar 

  36. M. J. Graham and R. J. Hussey, Oxidation of Metals 15, 407 (1981).

    Article  CAS  Google Scholar 

  37. R. J. Hussey, D. Caplan, and M. J. Graham, Oxidation of Metals 15, 421 (1981).

    Article  CAS  Google Scholar 

  38. N. Bertrand, PhD thesis, Institut National Polytechnique de Toulouse, France (2006).

  39. N. Bertrand, C. Desgranges, D. Gauvain, D. Monceau, and D. Poquillon, Materials Science Forum 461–464, 591 (2004).

    Article  Google Scholar 

  40. D. A. Voss, E. P. Butler, and T. E. Mitchell, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 13, 929 (1982).

    Article  CAS  Google Scholar 

  41. G. M. Raynaud and R. A. Rapp, Oxidation of Metals 21, 89 (1984).

    Article  CAS  Google Scholar 

  42. M. Hänsel, W. J. Quadakkers, and D. J. Young, Oxidation of Metals 59, 285 (2003).

    Article  Google Scholar 

  43. R. Peraldi, D. Monceau, and B. Pieraggi, Oxidation of Metals 58, 249 (2002).

    Article  CAS  Google Scholar 

  44. S. N. Basu and J. W. Halloran, Oxidation of Metals 27, 143 (1987).

    Article  CAS  Google Scholar 

  45. A. Atkinson and R. I. Taylor, High Temperatures-High Pressures 14, 571 (1982).

    CAS  Google Scholar 

  46. J. E. Castle and P. L. Surman, Journal of Physical Chemistry-US 71, 4255 (1967).

    Article  CAS  Google Scholar 

  47. A. G. Crouch and J. Robertson, Acta Metallurgica et Materialia 38, 2567 (1990).

    Article  CAS  Google Scholar 

  48. S. Mrowec, Corrosion Science 7, 563 (1967).

    Article  CAS  Google Scholar 

  49. T. Maruyama, N. Fukagai, M. Ueda, and K. Kawamura, Materials Science Forum 461–464, 807 (2004).

    Article  Google Scholar 

  50. C. Desgranges, N. Bertrand, K. Abbas, D. Monceau, and D. Poquillon, Materials Science Forum 461–464, 481 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Claude Armand (INSA Toulouse) for SIMS Analysis, Patrick Bonaillie and Sylvie Poissonnet (CEA) for SEM observations, Rikke Ollemann (HKL Technology) and Daniel Galy (Synergie4) for EBSD analysis, Fabrice Legendre and Sébastien Cabessut (CEA) for 16O2/18O2 oxidation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Desgranges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, N., Desgranges, C., Poquillon, D. et al. Iron Oxidation at Low Temperature (260–500 °C) in Air and the Effect of Water Vapor. Oxid Met 73, 139–162 (2010). https://doi.org/10.1007/s11085-009-9171-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9171-0

Keywords

Navigation