Oxidation of Metals

, 72:311 | Cite as

Composition, Microstructure, and Water Vapor Effects on Internal/External Oxidation of Alumina-Forming Austenitic Stainless Steels

  • M. P. BradyEmail author
  • Y. Yamamoto
  • M. L. Santella
  • L. R. Walker
Original Paper


A family of creep-resistant austenitic stainless steels based on alumina (Al2O3) scale formation (AFA alloys) for superior high-temperature oxidation resistance was recently identified. Excellent oxidation behavior was observed at 650 and 700 °C in air with 10% water vapor. However, particularly at 800 °C, the presence of water vapor greatly increased the tendency for internal oxidation of Al. Water vapor also enhanced subscale Al depletion in some AFA alloys relative to dry air exposure. Increased levels of Nb additions were found to significantly improve oxidation resistance, as were reactive element additions of Hf and Y. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2Nb base Laves phase precipitates were used to interpret oxidation behavior in terms of two-phase oxidation theory, reservoir effect, and the third-element effect of Cr. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Implications of these findings for the design of AFA alloys with increased upper use temperature limits are discussed.


Stainless steel Third-element effect Multi-phase alloy oxidation Water vapor Alumina 



The authors thank P.·F. Tortorelli, H. Bei, B. A. Pint, and I. G. Wright for helpful comments on this manuscript. This work was funded by the Fossil Energy Advanced Research Materials program. Additional funding and collaboration with the SHaRE User Facility at ORNL is also acknowledged. ORNL is managed by UT-Battelle, LLC for the US DOE under contract DE-AC05-00OR22725. Notice: This submission was sponsored by a contractor of the United States Government under contract DE-AC05-00OR22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes.


  1. 1.
    Y. Yamamoto, M. P. Brady, Z. P. Lu, P. J. Maziasz, C. T. Liu, B. A. Pint, K. L. More, H. M. Meyer, and E. A. Payzant, Science 316, 433 (2007).CrossRefPubMedADSGoogle Scholar
  2. 2.
    Y. Yamamoto, M. P. Brady, Z. P. Lu, M. Takeyama, P. J. Maziasz, C. T. Liu, and B. A. Pint, Metallurgical and Materials Transactions 38, 2737 (2007).CrossRefADSGoogle Scholar
  3. 3.
    M. P. Brady, Y. Yamamoto, M. L. Santella, and B. A. Pint, Scripta Materialia 57, 1117 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Yamamoto, M. Takeyama, Z. P. Lu, C. T. Liu, N. D. Evans, P. J. Maziasz, and M. P. Brady, Intermetallics 16, 453 (2008).CrossRefGoogle Scholar
  5. 5.
    M. P. Brady, Y. Yamamoto, B. A. Pint, M. L. Santella, P. J. Maziasz, and L. R. Walker, Materials Science Forum 595–598, 725 (2008).CrossRefGoogle Scholar
  6. 6.
    M. P. Brady, Y. Yamamoto, M. L. Santella, P. J. Maziasz, B. A. Pint, and C. T. Liu, JOM-Journal of Metals, Minerals, and Materials Society 60(7), 12 (2008).Google Scholar
  7. 7.
    Y. Yamamoto, M. L. Santella, M. P. Brady, H. Bei, and P. J. Maziasz, Metallurgical and Materials Transactions A. doi: 10.1007/s11661-009-9886-1.
  8. 8.
    B. A. Pint, J. P. Shingledecker, M. P. Brady, and P. J. Maziasz, Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea, and Air May 14–17 (Montreal, Canada, 2007).Google Scholar
  9. 9.
    P. Kofstad, High Temperature Corrosion (Elsevier, London, 1988).Google Scholar
  10. 10.
    S. R. J. Saunder, M. Monteiro, and F. Rizzo, Progress In Materials Science 53, 775 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Galerie, Y. Wouters, and M. Caillet, High Temperature Corrosion and Protection of Materials 5 pts 1 and 2 in Materials Science Forum 369–372, 231 (2001).Google Scholar
  12. 12.
    X. Peng, J. Yan, Y. Zhou, and F. Wang, Acta Materialia 53, 5079 (2005).CrossRefGoogle Scholar
  13. 13.
    E. J. Opila, High Temperature Corrosion and Protection of Materials 6, pts 1 and 2 in Materials Science Forum 461–464, 765 (2004).Google Scholar
  14. 14.
    D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).CrossRefGoogle Scholar
  15. 15.
    H. Asteman, J. E. Svensson, L. G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).CrossRefGoogle Scholar
  16. 16.
    N. Otsuka, Y. Shida, and H. Fujikawa, Oxidation of Metals 32, 13 (1989).CrossRefGoogle Scholar
  17. 17.
    E. Essuman, G. H. Meier, J. Zurek, M. Hansel, L. Singheiser, and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).CrossRefGoogle Scholar
  18. 18.
    E. Essuman, G. H. Meier, J. Zurek, M. Hansel, and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).CrossRefGoogle Scholar
  19. 19.
    M. Nakai, K. Nagai, Y. Murata, M. Morinaga, S. Matsuda, and M. Kanno, Materials Transactions 46, 69 (2005).CrossRefGoogle Scholar
  20. 20.
    Z. G. Yang, M. S. Walker, P. Singh, and J. W. Stevenson, Electrochemical and Solid State Letters 6, B35 (2003).CrossRefGoogle Scholar
  21. 21.
    G. Hultquist, B. Tveten, and E. Hornlund, Oxidation of Metals 54, 1 (2000).CrossRefGoogle Scholar
  22. 22.
    G. Hultquist, B. Tveten, E. Hornlund, M. Limback, and R. Haugsrud, Oxidation of Metals 56, 313 (2001).CrossRefGoogle Scholar
  23. 23.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).CrossRefGoogle Scholar
  24. 24.
    H. Buscail, S. Heinze, Ph. Dufour, and J. P. Larpin, Oxidation of Metals 47, 445 (1997).CrossRefGoogle Scholar
  25. 25.
    H. Gotlind, F. Liu, J.-E. Svensson, M. Halvarsson, and L.-G. Johansson, Oxidation of Metals 67, 251 (2007).CrossRefGoogle Scholar
  26. 26.
    B. A. Pint, J. A. Haynes, Y. Zhang, K. L. More, and I. G. Wright, Surface and Coatings Technology 201, 3852 (2006).CrossRefGoogle Scholar
  27. 27.
    R. Janakiraman, G. H. Meier, and F. S. Pettit, Metallurgical And Materials Transactions A 30, 2905 (1999).CrossRefGoogle Scholar
  28. 28.
    J. L. Smialek, JOM-Journal of Metals, Minerals, and Materials Society 58, 29 (2006).Google Scholar
  29. 29.
    M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 34A, 2609 (2003).CrossRefADSGoogle Scholar
  30. 30.
    K. Onal, M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Materials at High Temperatures 20, 327 (2003).CrossRefGoogle Scholar
  31. 31.
    I. Kvernes, M. Oliverire, and P. Kofstad, Corrosion Science 17, 237 (1977).CrossRefGoogle Scholar
  32. 32.
    F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).CrossRefGoogle Scholar
  33. 33.
    D. J. Young and B. Gleeson, Corrosion Science 44, 345 (2002).CrossRefGoogle Scholar
  34. 34.
    B. A. Pint, Oxidation of Metals 45, 1 (1996).CrossRefGoogle Scholar
  35. 35.
    B. A. Pint, M. J. Dwyer, and R. M. Deacon, Oxidation of Metals 69, 211 (2008).CrossRefGoogle Scholar
  36. 36.
    M. P. Brady, B. Gleeson, and I. G. Wright, JOM-Journal of Metals, Minerals, and Materials Society 52, 16 (2000).Google Scholar
  37. 37.
    F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).CrossRefGoogle Scholar
  38. 38.
    S. W. Guan and W. W. Smeltzer, Oxidation of Metals 42, 375 (1994).Google Scholar
  39. 39.
    V. Maurice, A. G. Noumet, S. Zanna, P. Josso, M. P. Bacos, and P. Marcus, Acta Materialia 56, 3963 (2008).CrossRefGoogle Scholar
  40. 40.
    P. Tomaszewicz and G. R. Wallwork, in High Temperature Corroison, ed. R. A. Rapp (NACE, Houston, TX, USA, 1981), p. 258.Google Scholar
  41. 41.
    B. A. Pint, M. P. Brady, Y. Yamamoto, M. L. Santella, J. Y. Howe, R. Trejo, and P. J. Maziasz, in Presented at the International Gas Turbine & Aeroengine Congress & Exhibition (Orlando, FL, June 8–12, 2009).Google Scholar
  42. 42.
    M. P. Brady, Y. Yamamoto, and M.L. Santella (to be submitted).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. P. Brady
    • 1
    Email author
  • Y. Yamamoto
    • 1
  • M. L. Santella
    • 1
  • L. R. Walker
    • 1
  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations