Skip to main content
Log in

Evaluation of the Corrosion Resistance of Fe–Al–Cr Alloys in Simulated Low NO x Environments

Part 2: Electron Microprobe Analysis and Scanning Transmission Electron Microscopy Studies

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The first part of this manuscript presented SEM analysis of corrosion products formed on iron–aluminum–chromium alloys that were exposed to a simulated low NO x combustion environments. In Part II, results from electron microprobe analysis (EMPA) and scanning transmission electron microscopy (STEM) analyses of select as-corroded coupons from the long tem tests are discussed. Despite the formation of thick iron sulfide films one of the alloys, EMPA did not detect any measurable depletion of aluminum near the surface of this alloy. STEM analysis revealed that chromium was able to form chromium sulfides only on the higher aluminum content alloys, thereby preventing the formation of deleterious iron sulfides and reducing the overall corrosive attack on this alloy. Also observed in the STEM analysis was the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may serve as a secondary layer of corrosion protection in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Tomaszewicz and G. R. Wallwork, Oxidation of Metals 20, 75 (1983).

    Article  CAS  Google Scholar 

  2. S. W. Banovic, J. N. DuPont, and A. R. Marder, Metallurgical and Materials Transactions A 31A, 1805 (2000).

    Article  CAS  Google Scholar 

  3. J. R. Regina, J. N. DuPont, and A. R. Marder, Welding Journal (Miami, FL) 86, 170s (2007) .

    Google Scholar 

  4. J. R. Regina, J. N. DuPont, and A. R. Marder, Materials Science Engineering A A404, 71 (2005).

    Article  CAS  Google Scholar 

  5. J. H. DeVan and P. F. Tortorelli, Corrosion Science 35, 1065 (1993).

    Article  CAS  Google Scholar 

  6. R. M. Deacon, J. N. DuPont, C. J. Kiely, A. R. Marder, and P. F. Tortorelli, Oxidation of Metals (2009) (submitted).

  7. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, J. A. D. Romig, C. E. Lyman, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis (Plenum Press, New York, 1992).

    Google Scholar 

  8. L. B. Pankratz, Bulletin—United States, Bureau of Mines 672 (1982).

  9. L. B. Pankratz, A. D. Mah, S. W. Watson, Bulletin—United States, Bureau of Mines 689 (1987).

  10. S. Mrowec, Werkstoffe und Korrosion 31, 371 (1980).

    Article  CAS  Google Scholar 

  11. B. Gleeson, Materials Research (Sao Carlos, Brazil) 7, 61 (2004).

    CAS  Google Scholar 

  12. G. C. Wood, J. A. Richardson, M. G. Hobby, and J. Boustead, Corrosion Science 9, 659 (1969).

    Article  CAS  Google Scholar 

  13. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  CAS  Google Scholar 

  14. Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corrosion Science 48, 741 (2006).

    Article  CAS  Google Scholar 

  15. W. Kai and R. T. Huang, Oxidation of Metals 48, 59 (1997).

    Article  CAS  Google Scholar 

  16. D. B. Lee, G. Y. Kim, and J. G. Kim, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing A339, 109 (2003).

    CAS  Google Scholar 

  17. S. Sheybany and D. L. Douglass, Oxidation of Metals 30, 433 (1988).

    Article  CAS  Google Scholar 

  18. C. Wagner, Journal of Electrochemical Society 99, 369 (1952).

    Article  CAS  Google Scholar 

  19. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood, Acta Metallurgica 15, 1421 (1967).

    Article  CAS  Google Scholar 

  20. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 12, 413 (1978).

    Article  CAS  Google Scholar 

  21. G. C. Wood, Oxidation of Metals 2, 11 (1970).

    Article  CAS  Google Scholar 

  22. H. C. Akuezue and D. P. Whittle, Metal Science 17, 27 (1983).

    CAS  Google Scholar 

  23. H. C. Akuezue and J. Stringer, Metallurgical Transactions A: Physical Metallurgy and Materials Science 20A, 2767 (1989).

    Article  ADS  CAS  Google Scholar 

  24. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  25. K. M. N. Prasanna, A. S. Khanna, R. Chandra, and W. J. Quadakkers, Oxidation of Metals 46, 465 (1996).

    Article  CAS  Google Scholar 

  26. B. Lesage, L. Marechal, A. M. Huntz, and R. Molins, Diffusion and Defect Data—Solid State Data, Pt. A: Defect and Diffusion Forum 194199, 1707 (2001).

  27. K. Natesan and R. N. Johnson, in Corrosion performance of Fe-Cr-Al and Fe aluminide alloys in complex gas environments. Heat-Resistant Materials II, Conference Proceedings of the International Conference on Heat-Resistant Materials, 2nd, Gatlinburg, TN, September 11–14, 1995, p. 591.

  28. F. H. Stott, K. T. Chuah, and L. B. Bradley, Materials and Corrosion 47, 695 (1996).

    Article  CAS  Google Scholar 

  29. J. Klower, Materials and Corrosion 47, 685 (1996).

    Article  Google Scholar 

  30. P. C. Patnaik and W. W. Smeltzer, Oxidation of Metals 23, 53 (1985).

    Article  CAS  Google Scholar 

  31. P. J. Smith, P. R. S. Jackson, and W. W. Smeltzer, Journal of Electrochemical Society 134, 1424 (1987).

    Article  CAS  Google Scholar 

  32. K. Przybylski, T. Narita, and W. W. Smeltzer, Oxidation of Metals 38, 1 (1992).

    Article  CAS  Google Scholar 

  33. S. W. Banovic, J. N. DuPont, and A. R. Marder, Acta Materialia 48, 2815 (2000).

    Article  CAS  Google Scholar 

  34. S. W. Banovic, J. N. DuPont, and A. R. Marder, Materials Characteristics 45, 241 (2000).

    Article  CAS  Google Scholar 

  35. S. Mrowec and M. Wedrychowska, Oxidation of Metals 13, 481 (1979).

    Article  CAS  Google Scholar 

  36. K. N. Strafford and R. Manifold, Oxidation of Metals 1, 221 (1969).

    Article  CAS  Google Scholar 

  37. W. Kai and D. L. Douglass, Oxidation of Metals 39, 281 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy through the National Energy Technology Laboratory through grant number DE-FG26-04NT42169. The authors wish to thank Dr. Vinod Sikka of Oak Ridge National Laboratory for preparation of the alloys used in this study. Dave Ackland of Lehigh University and Masashi Watanabe of Lawrence Berkeley National Laboratory are also gratefully acknowledged for their assistance with the STEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Deacon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deacon, R.M., DuPont, J.N., Kiely, C.J. et al. Evaluation of the Corrosion Resistance of Fe–Al–Cr Alloys in Simulated Low NO x Environments. Oxid Met 72, 87–107 (2009). https://doi.org/10.1007/s11085-009-9150-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9150-5

Keywords

Navigation