Skip to main content
Log in

Sulfur Segregation at Al2O3/γ-Νi + γ′-Ni3Al Interfaces: Effects of Pt, Cr and Hf Additions

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The interfacial chemistry that developed as a result Al2O3-scale growth on γ-Νi + γ′-Ni3Al alloys at 1150 °C was studied using scanning Auger microscopy after the oxide layer was scratched to spall under ultra-high vacuum. The extent of scale spallation was used to evaluate semi-quantitatively the interfacial strength. The alloys investigated were primarily γ′ in structure, containing 22 at.% Al plus further additions of Pt, Cr and/or Hf. In the case of the binary γ + γ′ alloy, it was found that a sub-monolayer of sulfur segregated at the alloy/scale interface. Platinum reduced and hafnium eliminated sulfur segregation, but chromium enhanced it through Cr–S co-segregation, even on Pt- and Hf-containing alloys. Platinum also segregated slightly at the alloy/scale interface. The interface strength was a strong function of the sulfur content. Beyond the effect of eliminating S segregation, Pt and Hf both showed additional beneficial effects on alumina scale adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  2. D. R. Clarke and C. G. Levi, Annual Review of Materials Research 33, 383 (2003).

    Article  CAS  Google Scholar 

  3. Y. Zhang, W. Y. Lee, J. A. Haynes, I. G. Wright, B. A. Pint, K. M. Cooley, and P. K. Liaw, Metallurgical and Materials Transactions A 30A, 2679 (1999).

    Article  CAS  Google Scholar 

  4. H. Svensson, J. Angenete, and K. Stiller, Surface and Coating Technology 177–178, 152 (2004).

    Article  CAS  Google Scholar 

  5. V. K. Tolpygo and D. R. Clarke, Surface and Coating Technology 163–164, 81 (2003).

    Article  Google Scholar 

  6. Y. Zhang, J. A. Haynes, B. A. Pint, I. G. Wright, and W. Y. Lee, Surface and Coating Technology 163–164, 19 (2003).

    Article  Google Scholar 

  7. J. H. Chen and J. A. Little, Surface and Coating Technology 92, 69 (1997).

    Article  CAS  Google Scholar 

  8. J. Angenete and K. Stiller, Surface and Coating Technology 150, 107 (2002).

    Article  CAS  Google Scholar 

  9. B. Gleeson, W. Wang, S. Hayashi, and D. Sordelet, Materials Science Forum 461–464, 213 (2004).

    Article  Google Scholar 

  10. N. Mu, T. Izumi, L. Zhang, and B. Gleeson, Materials Science Forum 595–598, 239 (2008).

    Article  Google Scholar 

  11. T. Izumi, N. Mu, L. Zhang, and B. Gleeson, Surface and Coating Technology 202, 628 (2007).

    Article  CAS  Google Scholar 

  12. T. Izumil and B. Gleeson, Materials Science Forum 522–523, 221 (2006).

    Article  Google Scholar 

  13. S. Hayashi and B. Gleeson, Oxidation of Metals, 71, xxx (2009).

  14. J. A. Haynes, B. A. Pint, Y. Zhang, and I. G. Wright, Surface and Coating Technology 202, 730 (2007).

    Article  CAS  Google Scholar 

  15. P. Tomaszewicz and G. R. Wallwork, Oxidation of Metals 20, 75 (1983).

    Article  CAS  Google Scholar 

  16. P. Y. Hou and K. Priimak, Oxidation of Metals 63, 113 (2005).

    Article  CAS  Google Scholar 

  17. P. Y. Hou, Annual Review of Materials Research 38, 275 (2008).

    Article  CAS  Google Scholar 

  18. P. Y. Hou and K. F. McCarty, Scripta Metallurgia 54, 937 (2006).

    Article  CAS  Google Scholar 

  19. F. Qin, C. Jiang, J. W. Anderegg, C. J. Jenks, B. Gleeson, D. J. Sordelet, and P. A. Thiel, Surface Science 601, 376 (2007).

    Article  ADS  CAS  Google Scholar 

  20. Y. Cadoret, M.-P. Bacos, P. Josso, V. Maurice, P. Marcus, and S. Zanna, Materials Science Forum 461–464, 247 (2004).

    Article  Google Scholar 

  21. P. Y. Hou, Oxidation of Metals 52, 337 (1999).

    Article  CAS  Google Scholar 

  22. H. J. Schmutzler, H. Viefhaus, and H. J. Grabke, Surfacce Interface Analysis 18, 581 (1992).

    Article  CAS  Google Scholar 

  23. V. K. Tolpygo and H. Viefhaus, Oxidation of Metals 52, 1 (1999).

    Article  CAS  Google Scholar 

  24. C. Mennicke, E. Schumann, H. Al-Badairy, G. J. Tatlock, M. Goebel, G. Borchardt, and J. Le Coze, Physica Status Solidi A 167, 419 (1998).

    Article  ADS  CAS  Google Scholar 

  25. P. Y. Hou, Materials and Corrosion 51, 329 (2000).

    Article  CAS  Google Scholar 

  26. R. Molins and P. Y. Hou, Surface & Coating Technology 201, 3841 (2006).

    Article  CAS  Google Scholar 

  27. P. Y. Hou, in High Temperature Corrosion and Materials Chemistry, eds. P. Y. Hou, M. J. McNallan, R. Oltra, E. J. Opila and D. A. Shores (the Electrochemical Society, 1998), p. 198.

  28. I. A. Allam, D. P. Whittle, and J. Stringer, Oxidation of Metals 12, 35 (1978).

    Google Scholar 

  29. I. A. Allam, D. P. Whittle, and J. Stringer, Oxidation of Metals 13, 381 (1979).

    Google Scholar 

  30. P. Y. Hou and J. Stringer, Journal de Physique 4 C9, 231 (1993).

    Google Scholar 

  31. L. E. Davis, N. C. MacDonald, P. W. Palmbery, G. E. Riach, and R. E. Weber, Handbook of Auger Electron Spectroscopy, 2nd edn. (Physical Electronics Division, Perkin-Elmer Corp, Minnesota, 1976).

    Google Scholar 

  32. D. Briggs and M. P. Seah, eds. in Practical Surface Analysis, Vol. 1, Auger and X-ray Photoelectron Spectroscopy, 2nd edn. (Wiley, New York, 1990).

  33. P. Seah and E. D. Hondros, Proceedings of Royal Society of London A 335, 191 (1973).

    Article  ADS  CAS  Google Scholar 

  34. R. Yu and P. Y. Hou, Applied Physics Letters 91, 011907 (2007).

    Article  ADS  CAS  Google Scholar 

  35. J. Feng, W. Zhang, W. Jiang, and Hui Gu, PRL 97, 246102 (2006).

    Article  ADS  CAS  Google Scholar 

  36. A. W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein, Metallurgical Transactions 16A, 1164 (1985).

    ADS  CAS  Google Scholar 

  37. J. L. Smialek, Oxidation of Metals 55, 75 (2001).

    Article  CAS  Google Scholar 

  38. P. Y. Hou, Journal of Corrosion Science and Engineering 6, 75 (2003).

    Google Scholar 

  39. J. de Plessis, in Diffusion and Defect Data Part B. Solid State Phenomena, Vol. 11 (Brookfield VT, Sci-Tech Publications, 1990), p. 22.

  40. A. Dziakova, E. Clauberg, C. Uebing, and J. Janovec, Surface Review Letters 6, 389 (1999).

    Article  ADS  CAS  Google Scholar 

  41. B. G. Mendis, B. Tryon, T. M. Pollock, and K. J. Hemker, Surface & Coating Technology 201, 3918 (2006).

    Article  CAS  Google Scholar 

  42. D. R. Sigler, Oxidation of Metals 32, 337 (1989).

    Article  CAS  Google Scholar 

  43. C. Sarioglu, M. J. Stiger, J. R. Blachere, R. Janakiraman, E. Schumann, A. Ashary, F. S. Pettit, and G. H. Meier, Materials and Corrosions 51, 358 (2000).

    Article  CAS  Google Scholar 

  44. J. L. Smialek and B. A. Pint, Materials Science Forum 369–372, 439 (2001).

    Google Scholar 

  45. B. A. Pint, K. L. More, I. G. Wright, and P. F. Tortorelli, Materials at High Temperature 17, 165 (2000).

    CAS  Google Scholar 

  46. P. Y. Hou and V. K. Tolpygo, Surface & Coating Technology 202, 623 (2007).

    Article  CAS  Google Scholar 

  47. F. Gaudette, S. Suresh, A. G. Evans, G. Dehm, and M. Ruhle, Acta Materialia 45, 3503 (1997).

    Article  CAS  Google Scholar 

  48. F. Gaudette, S. Suresh, and A. G. Evans, Metallurgical and Materials Transactions A 31A, 1977 (2000).

    Article  CAS  Google Scholar 

  49. Y. Hong, A. B. Anderson, and J. L. Smialek, Surface Science 230, 175 (1990).

    Article  ADS  CAS  Google Scholar 

  50. J. R. Smith, Y. Jiang, and A. G. Evans, International Journal of Materials Research 12, 1214 (2007).

    Google Scholar 

  51. J. A. Haynes, B. A. Pint, K. L. More, Y. Zhang, and I. G. Wright, Oxidation of Metals 58, 513 (2002).

    Article  CAS  Google Scholar 

  52. M. Mayer, G. Pacchioni, and N. Rosch, Surface Science 412/413, 616 (1988).

    Article  Google Scholar 

Download references

Acknowledgment

Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. Research at LBNL was sponsored by the above DOE office under contract DE-AC02-06CH11357 and by the Air Force Office of Sponsored Research under the MEANS-2 Program (Grant No. FA9550-05-1-0173). Research at Iowa State was supported by the Office of Naval Research under contract N00014-07-1-0122, with Dr. David Shifler being the Program Manager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, P.Y., Izumi, T. & Gleeson, B. Sulfur Segregation at Al2O3/γ-Νi + γ′-Ni3Al Interfaces: Effects of Pt, Cr and Hf Additions. Oxid Met 72, 109–124 (2009). https://doi.org/10.1007/s11085-009-9149-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9149-y

Keywords

Navigation